目錄
Spotlight:理解手機介面
Spotlight模型
實驗結果
首頁 科技週邊 人工智慧 兩位Google華人研究員發布首個純視覺「行動UI理解」模型,四大任務刷新SOTA

兩位Google華人研究員發布首個純視覺「行動UI理解」模型,四大任務刷新SOTA

Apr 12, 2023 pm 04:40 PM
介面 ui 模型

對AI來說,「玩手機」可不是一件易事,光是辨識各種使用者介面(user interface, UI)就是一大難題:不光要辨識出各個元件的類型,還要根據其所使用的符號、位置來判斷組件的功能。

兩位Google華人研究員發布首個純視覺「行動UI理解」模型,四大任務刷新SOTA

對行動裝置UI的理解,能夠幫助實現各種人機互動任務,例如UI自動化等。

先前的工作對行動UI的建模通常依賴螢幕的視圖層次信息,直接利用了UI的結構數據,並藉此繞過了從螢幕像素開始對組件進行識別的難題。

不過並不是所有的場景下都有可用的視圖層次,這種方法通常會因為物件描述的缺失或結構資訊的錯位而輸出錯誤結果,所以儘管使用視圖層次結構可以提升短期效能,但最終可能會阻礙模型的適用性和泛化性能。

最近Google Research的兩位研究人員提出了一個可用於行動端UI理解的純視覺方法Spotlight,在視覺語言模型的基礎上,只需要將使用者介面的截圖和螢幕上的一個感興趣的區域(focus)作為輸入即可。

兩位Google華人研究員發布首個純視覺「行動UI理解」模型,四大任務刷新SOTA

論文連結:https://arxiv.org/pdf/2209.14927.pdf

Spotlight的這種通用架構很容易擴展,並且能夠執行一系列的使用者介面建模任務。

文中的實驗結果表明,Spotlight模型在幾個有代表性的使用者介面任務上均達到了sota的效能,成功超越先前使用螢幕截圖和視圖層次結構作為輸入的方法。

此外,文中也探索了Spotlight模型的多任務學習和few-shot提示的能力,在多任務學習方向上也展現出了有前景的實驗結果。

論文作者Yang Li是Google研究中心的高級研究員,也是華盛頓大學 CSE 的附屬教員,在中國科學院獲得電腦科學博士學位,並在加州大學柏克萊分校 EECS 進行博士後研究。他領導開發了下一個 Android 應用程式預測,也是 Android 上在裝置上互動機器學習的先驅,也開發手勢搜尋等。

兩位Google華人研究員發布首個純視覺「行動UI理解」模型,四大任務刷新SOTA

Spotlight:理解手機介面

#對使用者介面的運算理解是實現智慧 UI 行為的關鍵一步。

在此之前,該團隊研究過各種UI 建模任務,包括視窗標題(widget)、螢幕摘要(screen summarization)和command grounding,這些任務解決了不同互動場景下的自動化和可訪問性問題。

後續也利用這些功能演示了機器學習如何幫助「使用者體驗從業者」透過診斷可點擊性混淆來提高UI 質量,並為改進UI 設計提供思路,所有這些工作與其他領域的工作共同展現了深度神經網路如何潛在地改變終端使用者的體驗及互動設計實踐。

兩位Google華人研究員發布首個純視覺「行動UI理解」模型,四大任務刷新SOTA

雖然在處理「單一UI 任務」時取得了一定程度上的成功,但接下來的問題是:是否能夠從「特定UI 辨識”任務中提升對「通用UI」的處理能力。

Spotlight模型也是對這個問題的解決方案進行的第一次嘗試,研究人員開發了一個多任務模型來同時處理一系列UI 任務,儘管工作上取得了一些進展,但仍存在一些難題。

之前的UI 模型嚴重依賴UI 視圖層次結構,也就是行動端UI 螢幕的結構或元數據,例如網頁的文件物件模型(Document Object Model),模型直接取得螢幕上UI 物件的詳細信息,包括類型、文字內容和位置等。

這種元資料使得先前的模型相對於純視覺的模型來說更有優勢,但視圖層次結構資料的可訪問性是一大難題,物件描述缺失或結構資訊對齊不當等問題經常發生。

因此,儘管使用視圖層次結構可以獲得短期收益,但它最終可能會阻礙模型的效能和適用性。此外,先前的模型必須處理跨資料集和跨 UI 任務的異質訊息,往往會導致更複雜的模型體系結構,最終難以跨任務擴展或泛化。

Spotlight模型

純視覺的Spotlight方法旨在完全從原始像素實現通用的使用者介面理解能力。

研究人員引入了一個統一的方法來表示不同的UI 任務,其中的資訊可以通用地表示為兩種核心模式:視覺和語言,其中視覺模式捕獲用戶從UI 螢幕上看到的內容,語言模式可以是自然語言或任何與任務相關的token序列。

Spotlight 模型輸入為三元組:螢幕快照、螢幕上感興趣的區域和任務的文字描述;輸出是關於感興趣區域的文字描述或回應。

模型的這種簡單的輸入和輸出表示更加通用,可以適用於各種 UI 任務,並且可擴展到多種模型架構上。

兩位Google華人研究員發布首個純視覺「行動UI理解」模型,四大任務刷新SOTA

在模型設計上能夠進行一系列的學習策略和設置,從特定任務的微調,到多任務學習和few-shot學習。

Spotlight 模型能夠利用了現有的架構建構模組,例如ViT 和T5,這些模組在高資源的通用視覺語言領域中進行了預訓練,可以直接在這些通用領域模型之上進行模型構建。

因為UI 任務通常與螢幕上的特定物件或區域有關,模型需要能夠聚焦於物件或感興趣的區域,研究人員將焦點區域擷取器(Focus Region Extractor)引入視覺語言模型中,使模型能夠根據螢幕上下文聚焦於該區域。

研究人員還設計了一個區域總結器(Region Summarizer),透過使用區域邊界框生成的注意力query來獲得基於 ViT 編碼的螢幕區域的潛在表徵。

具體來說,就是每個座標(標量值,包括左,上,右或底部)的邊界框,在螢幕截圖中表示為黃色框。

先透過一個多層感知機(MLP)將輸入轉換為作為一個稠密向量的集合,然後回饋給Transformer模型,根據座標類型取得嵌入向量(coordinate-type embedding),對稠密向量及其對應的座標類型嵌入進行顏色編碼,以顯示它們與每個座標值之間的關係。

兩位Google華人研究員發布首個純視覺「行動UI理解」模型,四大任務刷新SOTA

然後座標查詢(Coordinate queries)透過「交叉注意力」參與ViT 輸出的螢幕編碼,最終Transformer的注意力輸出被用作T5下游解碼的區域表示。

實驗結果

研究人員使用兩個沒有無標籤的(unlabeled)資料集對Spotlight模型進行預訓練,分別是基於C4語料庫的內部資料集和一個內部移動資料集,總共包含250萬個行動UI 螢幕和8000萬個網頁。

接著分別針對四個下游任務,標題、摘要、grouding和可點擊性,對預訓練後的模型進行微調。

對於視窗標題(widget captioning)和螢幕摘要任務,使用CIDEr指標來衡量模型文字描述與評分者創建的一組參考的相似程度;對於command grounding任務,準確率指標為模型響應用戶指令成功定位目標物件的百分比;對於可點擊性預測,使用F1分數來衡量模型區分可點擊物件和不可點擊物件的能力。

實驗中,將Spotlight 與幾個基準模型進行了比較:WidgetCaption 使用視圖層次結構和每個UI 物件的圖像為物件產生文字描述;Screen2Words 使用視圖層次結構和螢幕截圖以及輔助功能(例如,應用程式描述)來為螢幕產生摘要;VUT 結合了螢幕截圖和視圖層次結構來執行多個任務;原始的Tappability 模型利用來自視圖層次結構的物件元資料和螢幕快照來預測物件的Tappability.

#Spotlight 在四個UI 建模任務中大大超越了先前的sota模型。

兩位Google華人研究員發布首個純視覺「行動UI理解」模型,四大任務刷新SOTA

在一個更有難度的任務設定中,要求模型同時學習多個任務,因為多任務模型可以大幅減少模型的能源消耗(model footprint),結果表明,Spotlight模型的性能仍然具有競爭力。

兩位Google華人研究員發布首個純視覺「行動UI理解」模型,四大任務刷新SOTA

為了理解區域總結器(Region Summarizer)如何使Spotlight 能夠聚焦於螢幕上的目標區域和相關區域,研究人員分析了窗口標題和螢幕總結任務的注意力權重,能夠指示出模型注意力在螢幕截圖上的位置。

兩位Google華人研究員發布首個純視覺「行動UI理解」模型,四大任務刷新SOTA

在下圖中,對於視窗標題任務,模型在預測「選擇切爾西隊」(select Chelsea team)時,左側的複選框以紅色邊框突出顯示,可以從右邊的注意力熱力圖中看到,模型不僅學會了注意複選框的目標區域,還學會了關注最左邊的文本“Chelsea”來生成標題。

兩位Google華人研究員發布首個純視覺「行動UI理解」模型,四大任務刷新SOTA

對於螢幕摘要任務,模型預測「頁面顯示一個學習應用程式的教學」(page displaying the tutorial of a learning app),並給出左側的截圖,在範例中,目標區域是整個螢幕,模型可以學習處理螢幕上的重要部分以進行摘要。

參考資料:

https://www.php.cn/link/64517d8435994992e682b3e4aa0a0661

##

以上是兩位Google華人研究員發布首個純視覺「行動UI理解」模型,四大任務刷新SOTA的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

全球最強開源 MoE 模型來了,中文能力比肩 GPT-4,價格僅 GPT-4-Turbo 的近百分之一 全球最強開源 MoE 模型來了,中文能力比肩 GPT-4,價格僅 GPT-4-Turbo 的近百分之一 May 07, 2024 pm 04:13 PM

想像一下,一個人工智慧模型,不僅擁有超越傳統運算的能力,還能以更低的成本實現更有效率的效能。這不是科幻,DeepSeek-V2[1],全球最強開源MoE模型來了。 DeepSeek-V2是一個強大的專家混合(MoE)語言模型,具有訓練經濟、推理高效的特點。它由236B個參數組成,其中21B個參數用於啟動每個標記。與DeepSeek67B相比,DeepSeek-V2效能更強,同時節省了42.5%的訓練成本,減少了93.3%的KV緩存,最大生成吞吐量提高到5.76倍。 DeepSeek是一家探索通用人工智

AI顛覆數學研究!菲爾茲獎得主、華裔數學家領銜11篇頂刊論文|陶哲軒轉贊 AI顛覆數學研究!菲爾茲獎得主、華裔數學家領銜11篇頂刊論文|陶哲軒轉贊 Apr 09, 2024 am 11:52 AM

AI,的確正在改變數學。最近,一直十分關注這個議題的陶哲軒,轉發了最近一期的《美國數學學會通報》(BulletinoftheAmericanMathematicalSociety)。圍繞著「機器會改變數學嗎?」這個話題,許多數學家發表了自己的觀點,全程火花四射,內容硬核,精彩紛呈。作者陣容強大,包括菲爾茲獎得主AkshayVenkatesh、華裔數學家鄭樂雋、紐大電腦科學家ErnestDavis等多位業界知名學者。 AI的世界已經發生了天翻地覆的變化,要知道,其中許多文章是在一年前提交的,而在這一

Google狂喜:JAX性能超越Pytorch、TensorFlow!或成GPU推理訓練最快選擇 Google狂喜:JAX性能超越Pytorch、TensorFlow!或成GPU推理訓練最快選擇 Apr 01, 2024 pm 07:46 PM

谷歌力推的JAX在最近的基準測試中表現已經超過Pytorch和TensorFlow,7項指標排名第一。而且測試並不是JAX性能表現最好的TPU上完成的。雖然現在在開發者中,Pytorch依然比Tensorflow更受歡迎。但未來,也許有更多的大型模型會基於JAX平台進行訓練和運行。模型最近,Keras團隊為三個後端(TensorFlow、JAX、PyTorch)與原生PyTorch實作以及搭配TensorFlow的Keras2進行了基準測試。首先,他們為生成式和非生成式人工智慧任務選擇了一組主流

你好,電動Atlas!波士頓動力機器人復活,180度詭異動作嚇到馬斯克 你好,電動Atlas!波士頓動力機器人復活,180度詭異動作嚇到馬斯克 Apr 18, 2024 pm 07:58 PM

波士頓動力Atlas,正式進入電動機器人時代!昨天,液壓Atlas剛「含淚」退出歷史舞台,今天波士頓動力就宣布:電動Atlas上崗。看來,在商用人形機器人領域,波士頓動力是下定決心要跟特斯拉硬剛一把了。新影片放出後,短短十幾小時內,就已經有一百多萬觀看。舊人離去,新角色登場,這是歷史的必然。毫無疑問,今年是人形機器人的爆發年。網友銳評:機器人的進步,讓今年看起來像人類的開幕式動作、自由度遠超人類,但這真不是恐怖片?影片一開始,Atlas平靜地躺在地上,看起來應該是仰面朝天。接下來,讓人驚掉下巴

替代MLP的KAN,被開源專案擴展到卷積了 替代MLP的KAN,被開源專案擴展到卷積了 Jun 01, 2024 pm 10:03 PM

本月初,來自MIT等機構的研究者提出了一種非常有潛力的MLP替代方法—KAN。 KAN在準確性和可解釋性方面表現優於MLP。而且它能以非常少的參數量勝過以更大參數量運行的MLP。例如,作者表示,他們用KAN以更小的網路和更高的自動化程度重現了DeepMind的結果。具體來說,DeepMind的MLP有大約300,000個參數,而KAN只有約200個參數。 KAN與MLP一樣具有強大的數學基礎,MLP基於通用逼近定理,而KAN基於Kolmogorov-Arnold表示定理。如下圖所示,KAN在邊上具

特斯拉機器人進廠打工,馬斯克:手的自由度今年將達到22個! 特斯拉機器人進廠打工,馬斯克:手的自由度今年將達到22個! May 06, 2024 pm 04:13 PM

特斯拉機器人Optimus最新影片出爐,已經可以在工廠裡打工了。正常速度下,它分揀電池(特斯拉的4680電池)是這樣的:官方還放出了20倍速下的樣子——在小小的「工位」上,揀啊揀啊揀:這次放出的影片亮點之一在於Optimus在廠子裡完成這項工作,是完全自主的,全程沒有人為的干預。而且在Optimus的視角之下,它還可以把放歪了的電池重新撿起來放置,主打一個自動糾錯:對於Optimus的手,英偉達科學家JimFan給出了高度的評價:Optimus的手是全球五指機器人裡最靈巧的之一。它的手不僅有觸覺

FisheyeDetNet:首個以魚眼相機為基礎的目標偵測演算法 FisheyeDetNet:首個以魚眼相機為基礎的目標偵測演算法 Apr 26, 2024 am 11:37 AM

目標偵測在自動駕駛系統當中是一個比較成熟的問題,其中行人偵測是最早得以部署演算法之一。在多數論文當中已經進行了非常全面的研究。然而,利用魚眼相機進行環視的距離感知相對來說研究較少。由於徑向畸變大,標準的邊界框表示在魚眼相機當中很難實施。為了緩解上述描述,我們探索了擴展邊界框、橢圓、通用多邊形設計為極座標/角度表示,並定義一個實例分割mIOU度量來分析這些表示。所提出的具有多邊形形狀的模型fisheyeDetNet優於其他模型,並同時在用於自動駕駛的Valeo魚眼相機資料集上實現了49.5%的mAP

牛津大學最新! Mickey:3D中的2D影像匹配SOTA! (CVPR\'24) 牛津大學最新! Mickey:3D中的2D影像匹配SOTA! (CVPR\'24) Apr 23, 2024 pm 01:20 PM

寫在前面項目連結:https://nianticlabs.github.io/mickey/給定兩張圖片,可以透過建立圖片之間的對應關係來估計它們之間的相機姿態。通常,這些對應關係是二維到二維的,而我們估計的姿態在尺度上是不確定的。一些應用,例如隨時隨地實現即時增強現實,需要尺度度量的姿態估計,因此它們依賴外部的深度估計器來恢復尺度。本文提出了MicKey,這是一個關鍵點匹配流程,能夠夠預測三維相機空間中的度量對應關係。透過學習跨影像的三維座標匹配,我們能夠在沒有深度測試的情況下推斷度量相對

See all articles