目錄
基礎知識準備
數位影像
影像通道
ROI和mask
矩陣(Numpy)知識
環境準備
程式碼處理
帽子處理
人臉偵測
ROI 提取
合成的圖片
合成用 Python 給你一個聖誕帽
首頁 後端開發 Python教學 用 Python 給你一個聖誕帽

用 Python 給你一個聖誕帽

Apr 12, 2023 pm 05:22 PM
python 影像 影像處理

聖誕將至,雖然咱不過這洋節,但是熱鬧還是要湊一下的,相信已經有很多聖誕帽相關的周邊在流傳了,今天咱們就自己動手,給頭像增加一個聖誕帽

基礎知識準備

在電腦中,影像是以矩陣的形式保存的,先行後列。所以,一張寬×高×顏色通道=480×256×3的圖片會保存在一個256×480×3的三維張量中。影像處理時也是依照這種想法進行計算的(其中就包括 OpenCV 下的影像處理),即 高×寬×色彩通道。

數位影像

對於一幅的數位影像,我們看到的是肉眼可見的一幅真正的圖片,但是電腦看來,這副影像只是一堆亮度各異的點。一副尺寸為 M × N 的圖像可以用一個 M × N 的矩陣來表示,矩陣元素的值表示這個位置上的像素的亮度,一般來說像素值越大表示該點越亮。

一般來說,灰階圖以 2 維矩陣表示,彩色(多通道)影像以 3 維矩陣(M× N × 3)表示。

影像通道

描述一個像素點,如果是灰度,那麼只需要一個數值來描述它,就是單一通道。如果一個像素點,有RGB三種顏色來描述它,就是三通道。而四聲道影像,就是R、G、B加上一個A通道,表示透明度。一般叫做alpha通道,表示透明度。

ROI和mask

Setting Region of Interest (ROI),翻譯成白話為,設定感興趣的區域。 mask是做影像遮罩處理,相當於把我們不關心的部位覆蓋住,留下ROI部分。上面說的alpha就可以當mask。

矩陣(Numpy)知識

矩陣索引、切片等,這裡我自己掌握的也不好,就不多說了,小夥伴兒們可以自行學習。

環境準備

有了基礎知識後,我們來簡單看下程式碼。

首先安裝需要使用的 OpenCV 和 dlib 庫,使用pip分別安裝之

pip install python-opencv

pip install dlib
登入後複製

然後手動在網路上下載資料模型檔案 shape_predictor_5_face_landmarks.dat,位址如下:http://dlib.net/files/,下載後放到專案目錄。

有興趣的同學可以玩那個 shape_predictor_68_face_landmarks.dat,辨識出的人臉關鍵點有68個之多呢。

用 Python 給你一個聖誕帽

程式碼處理

帽子處理

我們首先要做的就是處理帽子,我們使用的圖片如下

用 Python 給你一個聖誕帽

#先擷取帽子圖片的rgb和alpha值

# 帽子用 Python 給你一個聖誕帽
hat_img3 = cv2.imread("hat.png", -1)
r, g, b, a = cv2.split(hat_img3)
rgb_hat = cv2.merge((r, g, b))
cv2.imwrite("rgb_hat.jpg", rgb_hat)
cv2.imwrite("alpha.jpg", a)
print(a)
print(hat_img3.shape)
print(rgb_hat.shape)
登入後複製

我們得到的效果如下:

rgb圖

用 Python 給你一個聖誕帽

#alpha圖

用 Python 給你一個聖誕帽

對於的印出的a數值如下:

[[0 0 0 ... 0 0 0]
 [0 0 0 ... 0 0 0]
 [0 0 0 ... 0 0 0]
 ...
 [0 0 0 ... 0 0 0]
 [0 0 0 ... 0 0 0]
 [0 0 0 ... 0 0 0]]
登入後複製

人臉偵測

下面進行人臉偵測,使用dlib處理。

# 人脸检测
dets = self.detector(img, 1)
x, y, w, h = dets[0].left(), dets[0].top(), dets[0].right() - dets[0].left(), dets[0].bottom() - dets[0].top()
# 关键点检测
shape = self.predictor(img, dets[0])
point1 = shape.parts()[0]
point2 = shape.parts(2)
# 求两点中心
eyes_center = ((point1.x + point2.x) // 2, (point1.y + point2.y) // 2)
登入後複製

接下來是按照比例縮小帽子的圖片

# 帽子和人脸转换比例
hat_w = int(round(dets[0].right()/1.5))
hat_h = int(round(dets[0].bottom() / 2))
if hat_h > y:
hat_h = y - 1
hat_newsize = cv2.resize(rgb_hat, (hat_w, hat_h))
mask = cv2.resize(a, (hat_w, hat_h))
mask_inv = cv2.bitwise_not(mask)
dh = 0
dw = 0

bg_roi = img[y+dh-hat_h:y+dh,(eyes_center[0]-hat_w//3):(eyes_center[0]+hat_w//3*2)]
登入後複製

ROI 提取

進行ROI 提取

# 用alpha通道作为mask
mask = cv2.resize(a, (resized_hat_w, resized_hat_h))
mask_inv = cv2.bitwise_not(mask)
登入後複製

mask 變量,取出了帽子的區域。

用 Python 給你一個聖誕帽

mask_inv 變量,用來取出人臉圖片中安裝帽子的區域。

用 Python 給你一個聖誕帽

接下來在人臉圖片中取出安裝帽子的區域(ROI)

# 原图ROI
# bg_roi = img[y+dh-resized_hat_h:y+dh, x+dw:x+dw+resized_hat_w]
bg_roi = img[y + dh - resized_hat_h:y + dh,
 (eyes_center[0] - resized_hat_w // 3):(eyes_center[0] + resized_hat_w // 3 * 2)]
登入後複製

再接下來在人臉圖片中取出帽子形狀區域

# 原图ROI中提取放帽子的区域
bg_roi = bg_roi.astype(float)
mask_inv = cv2.merge((mask_inv, mask_inv, mask_inv))
alpha = mask_inv.astype(float) / 255
# 相乘之前保证两者大小一致(可能会由于四舍五入原因不一致)
alpha = cv2.resize(alpha, (bg_roi.shape[1], bg_roi.shape[0]))
# print("alpha size: ",alpha.shape)
# print("bg_roi size: ",bg_roi.shape)
bg = cv2.multiply(alpha, bg_roi)
bg = bg.astype('uint8')
登入後複製

這裡是把圖片預設的uint8型別轉換成了float型別運算,最後又轉換回來。

合成的圖片

用 Python 給你一個聖誕帽

黑黑的部分就是我們要放置帽子的地方。

在帽子圖片中提取帽子部分。

# 提取帽子区域
hat = cv2.bitwise_and(resized_hat, resized_hat, mask=mask)
登入後複製

使用剛剛調整大小的帽子圖片來擷取。

用 Python 給你一個聖誕帽

可以看到,除了帽子部分,其他区域已经掩模处理了。

以上就是提取ROI的过程,比较难懂,需要好好琢磨,尤其是矩阵的切片、mask处理部分。

合成用 Python 給你一個聖誕帽

最后一步就是把人脸用 Python 給你一個聖誕帽与帽子合成到一起了,也就是把人脸空余帽子部分的用 Python 給你一個聖誕帽区域和帽子只展示帽子区域的用 Python 給你一個聖誕帽区域(有点拗口)合并在一起。

# 相加之前保证两者大小一致(可能会由于四舍五入原因不一致)
hat = cv2.resize(hat, (bg_roi.shape[1], bg_roi.shape[0]))
# 两个ROI区域相加
add_hat = cv2.add(bg, hat)
登入後複製

效果如下:

用 Python 給你一個聖誕帽

刚刚好,完美叠加用 Python 給你一個聖誕帽。

最后把这个片段放回人脸原图中,展示用 Python 給你一個聖誕帽

img[y+dh-hat_h:y+dh, (eyes_center[0]-hat_w//3):(eyes_center[0]+hat_w//3*2)] = add_hat
登入後複製

用 Python 給你一個聖誕帽

美美的用 Python 給你一個聖誕帽就出来啦!

我们再尝试几张不同的用 Python 給你一個聖誕帽。

用 Python 給你一個聖誕帽

用 Python 給你一個聖誕帽

整体效果还不错哦,需要注意的是,在测试的时候,我们尽量选择人脸占比比较大的用 Python 給你一個聖誕帽来合成,效果要好很多哦~

以上是用 Python 給你一個聖誕帽的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

<🎜>:泡泡膠模擬器無窮大 - 如何獲取和使用皇家鑰匙
3 週前 By 尊渡假赌尊渡假赌尊渡假赌
北端:融合系統,解釋
3 週前 By 尊渡假赌尊渡假赌尊渡假赌

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

熱門話題

Java教學
1664
14
CakePHP 教程
1423
52
Laravel 教程
1319
25
PHP教程
1269
29
C# 教程
1248
24
PHP和Python:解釋了不同的範例 PHP和Python:解釋了不同的範例 Apr 18, 2025 am 12:26 AM

PHP主要是過程式編程,但也支持面向對象編程(OOP);Python支持多種範式,包括OOP、函數式和過程式編程。 PHP適合web開發,Python適用於多種應用,如數據分析和機器學習。

在PHP和Python之間進行選擇:指南 在PHP和Python之間進行選擇:指南 Apr 18, 2025 am 12:24 AM

PHP適合網頁開發和快速原型開發,Python適用於數據科學和機器學習。 1.PHP用於動態網頁開發,語法簡單,適合快速開發。 2.Python語法簡潔,適用於多領域,庫生態系統強大。

sublime怎麼運行代碼python sublime怎麼運行代碼python Apr 16, 2025 am 08:48 AM

在 Sublime Text 中運行 Python 代碼,需先安裝 Python 插件,再創建 .py 文件並編寫代碼,最後按 Ctrl B 運行代碼,輸出會在控制台中顯示。

高級Photoshop教程:大師修飾和合成 高級Photoshop教程:大師修飾和合成 Apr 17, 2025 am 12:10 AM

Photoshop的高級修圖與合成技術包括:1.使用圖層、蒙版和調整層進行基礎操作;2.通過調整圖像像素值實現修圖效果;3.利用多圖層和蒙版進行複雜合成;4.應用“液化”工具調整面部特徵;5.使用“頻率分離”技術進行細膩修圖,這些技術能提升圖像處理水平並實現專業級效果。

PHP和Python:深入了解他們的歷史 PHP和Python:深入了解他們的歷史 Apr 18, 2025 am 12:25 AM

PHP起源於1994年,由RasmusLerdorf開發,最初用於跟踪網站訪問者,逐漸演變為服務器端腳本語言,廣泛應用於網頁開發。 Python由GuidovanRossum於1980年代末開發,1991年首次發布,強調代碼可讀性和簡潔性,適用於科學計算、數據分析等領域。

Python vs. JavaScript:學習曲線和易用性 Python vs. JavaScript:學習曲線和易用性 Apr 16, 2025 am 12:12 AM

Python更適合初學者,學習曲線平緩,語法簡潔;JavaScript適合前端開發,學習曲線較陡,語法靈活。 1.Python語法直觀,適用於數據科學和後端開發。 2.JavaScript靈活,廣泛用於前端和服務器端編程。

Golang vs. Python:性能和可伸縮性 Golang vs. Python:性能和可伸縮性 Apr 19, 2025 am 12:18 AM

Golang在性能和可擴展性方面優於Python。 1)Golang的編譯型特性和高效並發模型使其在高並發場景下表現出色。 2)Python作為解釋型語言,執行速度較慢,但通過工具如Cython可優化性能。

vscode在哪寫代碼 vscode在哪寫代碼 Apr 15, 2025 pm 09:54 PM

在 Visual Studio Code(VSCode)中編寫代碼簡單易行,只需安裝 VSCode、創建項目、選擇語言、創建文件、編寫代碼、保存並運行即可。 VSCode 的優點包括跨平台、免費開源、強大功能、擴展豐富,以及輕量快速。

See all articles