Python程式設計:遞歸與匿名函數及函數屬性與文件字串(函數補充)
本文簡單扼要地說,輔以程式碼進一步地加深理解。
遞迴函數
當函數呼叫自身而產生最終結果時,這樣的函數稱為遞迴。有時遞歸函數非常有用,因為它們使編寫程式碼變得更容易——使用遞歸範式編寫一些演算法非常容易,而其他演算法則不是這樣。沒有不能以迭代方式重寫的遞歸函數,換句話說,所有遞歸函數都可以透過循環迭代的方式實現,因此通常由程式設計師根據手頭的情況選擇最佳方法。
遞歸函數主體通常有兩個部分:一部分的返回值依賴於對自身的後續調用,另一部分的返回值不依賴於對自身的後續調用(稱基本情況,或遞歸邊界)。
作為理解的參考範例,我們看一個階乘函數N!作為遞歸的兩部分分別是:基本情況(邊界,用來結束遞歸)是當N為0或1時,函數返回1,不需要進一步計算。另一方面,在一般情況下的自我調用,即N!返回的生成結果:
1 * 2 * ... * (N-1) * N
如果你仔細想想,N!可以寫成這樣:N!= (N - 1) !*N 。作為一個實際的例子,請看如下的階乘表示:
5! = 1 * 2 * 3 * 4 * 5 = (1 * 2 * 3 * 4) * 5 = 4! * 5
我們來轉化成函數實現:
# 阶乘递归函数实现 def factorial(n): if n in (0, 1): # 递归边界 return 1 return factorial(n - 1) * n # 递归调用
高手大俠們在編寫演算法時經常使用遞歸函數,編寫遞歸函數非常有趣。作為練習,嘗試使用遞歸和迭代方法解決幾個簡單的問題。很好的練習對象可能是計算斐波那契數列,或其它諸如此類的東西。自己動手試試吧。
提示: 在寫遞迴函數時,總是考慮要進行多少個巢狀調用,因為這是有限制的。有關這方面的更多信息,請查看sys.getrecursionlimit()和sys.setrecursionlimit()。 |
匿名函数
还有一种函数是匿名函数(Anonymous functions)。这些函数在Python中称为lambda(兰姆达),其通常在使用具有自己完整定义名称的函数有些多余时而使用,此时所需要的只是一个快速、简单的一行程序来完成这项工作。
假设我们想要一个列表,所有N的某个值,是5的倍数的数字。为此,我们可以使用filter()函数,它需要一个函数和一个可迭代对象作为输入。返回值是一个过滤器对象,当你遍历它时,会从输入可迭代对象中生成元素,所需的参数函数会为其返回True。如果不使用匿名函数,我们可能会这样做:
def isMultipleOfFive(n): return not n % 5 def getMultiplesOfFive(n): return list(filter(isMultipleOfFive, range(n)))
注意我们如何使用isMultipleOfFive()来过滤前n个自然数。这似乎有点过分——任务及其很简单,我们不需要为其他任何事情保留isMultipleOfFive()函数。此时,我们就可用lambda函数来重写它:
# lambda过滤 def getMultiplesOfFive(n): return list(filter(lambda k: not k % 5, range(n)))
逻辑是完全相同的,但是过滤函数现在是个lambda函数,显然,Lambda更简单。
定义Lambda函数非常简单,它遵循以下形式:
funcName = lambda [parameter_list]: expression
其返回的是一个函数对象,相当于:
def func_ name([parameter_list]):return expression
参数列表以逗号分隔。
注意,可选参数是方括号括起来的部分,是通用语法的表示形式,即文中的方括号部分是可选的,根据实际需要提供,
我们再来看另外两个等价函数的例子,以两种形式定义:
# lambda说明 # 示例 1: 两数相加 def adder(a, b): return a + b # 等价于: adder_lambda = lambda a, b: a + b # 示例 2: 字符串转大写 def to_upper(s): return s.upper() # 等价于: to_upper_lambda = lambda s: s.upper()
前面的例子非常简单。第一个函数将两个数字相加,第二个函数生成字符串的大写版本。注意,我们将lambda表达式返回的内容赋值给一个名称(adder_lambda, to_upper_lambda),但是当按照filter()示例中的方式使用lambda时,就不需要这样做了——不需要把匿名函数赋给变量。
函数属性
Python中每个函数都是一个完整的对。因此,它有许多属性。其中一些是特殊的,可以以内省的方式在运行时检查函数对象。下面的示例,展示了它们的一部分以及如何为示例函数显示它们的值:
# 函数属性 def multiplication(a, b=1): """返回a乘以b的结构. """ return a * b if __name__ == "__main__": special_attributes = [ "__doc__", "__name__", "__qualname__", "__module__", "__defaults__", "__code__", "__globals__", "__dict__", "__closure__", "__annotations__", "__kwdefaults__", ] for attribute in special_attributes: print(attribute, '->', getattr(multiplication, attribute))
我们使用内置的getattr()函数来获取这些属性的值。getattr(obj, attribute)等价于obj.attribute,当我们需要在运行时动态地获取属性时,就从变量中获取属性的名称(如本例中所示),此时它就会派上用场。
运行这个脚本会得到类似如下输出:
__doc__ -> 返回a乘以b的结果. __name__ -> multiplication __qualname__ -> multiplication __module__ -> __main__ __defaults__ -> (1,) __code__ -> <……> __globals__ -> {…略…} __dict__ -> {} __closure__ -> None __annotations__ -> {} __kwdefaults__ -> None |
这里省略了__globals__属性的值,内容太多。这个属性的含义可以在Python数据模型文档页面(或自带帮助文档中)的可调用类型部分找到:
https://www.php.cn/link/032abcd424b4312e7087f434ef1c0094
再次提醒:如果你想查看对象的所有属性,只需调用dir(object_name),将得到其所有属性的列表。
内置函数
Python自带很多内置函数。它们可以在任何地方使用,你可以通过dir(__builtins__)来查看builtins模块,或通过访问官方Python文档来获得它们的列表。这里就不一一介绍了。在前面的学习过程中,我们已经见过其中的一些,如any、bin、bool、divmod、filter、float、getattr、id、int、len、list、min、print、set、tuple、type和zip等,但还有更多,建议你至少应该阅读一次。熟悉它们,尝试它们,为它们每个编写一小段代码,并确保您随时可以使用它们,以便在需要时使用它们。
可在官方文档中找到这个内置函数列表:https://docs.python.org/3/library/functions.html 。
文档化代码
我们非常喜欢不需要文档的代码。当我们正确地编程、选择正确的名称、并注意细节时,代码应该是不言自明的,几乎不需要文档。不过,有时注释非常有用,添加一些文档化描述也是如此。你可以在Python的PEP 257规范——文档字符串约定中找到Python的文档指南:
https://www.php.cn/link/da40657c9fece7e48d30af42d31d4350
但在这里还是会向你展示基本原理。Python的文档中包含字符串,这些字符串被恰当地称为文档字符串(docstrings)。任何对象都可以被文档化来加以描述记录,可以使用单行或多行文档字符串。单行程序非常简单。不是为函数提供另外的签名,而应该声明或描述函数的目的。请看下面的示例:
# 简单的文档化代码 def square(n): """功能:返回数字n的平方。 """ return n ** 2 def get_username(userid): """功能:返回给定id的用户名称。 """ return db.get(user_id=userid).username
使用三重双引号字符串可以在以后轻松展开或扩展文档内容。
使用以句号结尾的句子,不要在前后留下空行。
多行注释的结构与此类似。应该用一行代码简单地说明对象的主旨,然后是更详细的描述。
作为多行文档化的一个例子,我们在下面的例子中使用Sphinx表示法记录了一个虚构的connect()函数及文档化描述:
# 多行文档化代码 def connect(host, port, user, password): """功能:连接数据库并返回连接对象. 使用如下参数直接连接 PostgreSQL数据库. :param host: 主机 IP. :param port: 端口. :param user: 连接用户名. :param password: 连接密码. :return: 连接对象. """ # 函数主体... return connection
提示:
Sphinx是用于创建Python文档的最广泛使用的工具之一——事实上,官方Python文档就是用它编写的。绝对值得花点时间去看看。
内置函数help()用于即时交互使用的,它就使用对象的文档字符串为对象创建文档页面来展示对象的用法。基本用法如下:
def square(n): """功能:返回数字n的平方。 """ return n ** 2 help(square) Help on function square in module __main__: square(n) 功能:返回数字n的平方。
首先明确或定义一个对象或函数(包括已有的对象或函数),然后使用内置help函数,并把对象或函数做help的参数,该函数就会返回相应对象的说明文档了。就这么简单。
本文小结
本文主要基于Python语言的一大特色——函数来拓展的一些相关编程知识,包括递归函数(重点是有限性和边界性)、lambda函数(简洁性和临时性)以及函数的属性以及如何实现函数的文档化描述等。
以上是Python程式設計:遞歸與匿名函數及函數屬性與文件字串(函數補充)的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

熱門話題

HadiDB:輕量級、高水平可擴展的Python數據庫HadiDB(hadidb)是一個用Python編寫的輕量級數據庫,具備高度水平的可擴展性。安裝HadiDB使用pip安裝:pipinstallhadidb用戶管理創建用戶:createuser()方法創建一個新用戶。 authentication()方法驗證用戶身份。 fromhadidb.operationimportuseruser_obj=user("admin","admin")user_obj.

2小時內可以學會Python的基本編程概念和技能。 1.學習變量和數據類型,2.掌握控制流(條件語句和循環),3.理解函數的定義和使用,4.通過簡單示例和代碼片段快速上手Python編程。

直接通過 Navicat 查看 MongoDB 密碼是不可能的,因為它以哈希值形式存儲。取回丟失密碼的方法:1. 重置密碼;2. 檢查配置文件(可能包含哈希值);3. 檢查代碼(可能硬編碼密碼)。

Python在web開發、數據科學、機器學習、自動化和腳本編寫等領域有廣泛應用。 1)在web開發中,Django和Flask框架簡化了開發過程。 2)數據科學和機器學習領域,NumPy、Pandas、Scikit-learn和TensorFlow庫提供了強大支持。 3)自動化和腳本編寫方面,Python適用於自動化測試和系統管理等任務。

MySQL數據庫性能優化指南在資源密集型應用中,MySQL數據庫扮演著至關重要的角色,負責管理海量事務。然而,隨著應用規模的擴大,數據庫性能瓶頸往往成為製約因素。本文將探討一系列行之有效的MySQL性能優化策略,確保您的應用在高負載下依然保持高效響應。我們將結合實際案例,深入講解索引、查詢優化、數據庫設計以及緩存等關鍵技術。 1.數據庫架構設計優化合理的數據庫架構是MySQL性能優化的基石。以下是一些核心原則:選擇合適的數據類型選擇最小的、符合需求的數據類型,既能節省存儲空間,又能提升數據處理速度

作為數據專業人員,您需要處理來自各種來源的大量數據。這可能會給數據管理和分析帶來挑戰。幸運的是,兩項 AWS 服務可以提供幫助:AWS Glue 和 Amazon Athena。

啟動 Redis 服務器的步驟包括:根據操作系統安裝 Redis。通過 redis-server(Linux/macOS)或 redis-server.exe(Windows)啟動 Redis 服務。使用 redis-cli ping(Linux/macOS)或 redis-cli.exe ping(Windows)命令檢查服務狀態。使用 Redis 客戶端,如 redis-cli、Python 或 Node.js,訪問服務器。

要從 Redis 讀取隊列,需要獲取隊列名稱、使用 LPOP 命令讀取元素,並處理空隊列。具體步驟如下:獲取隊列名稱:以 "queue:" 前綴命名,如 "queue:my-queue"。使用 LPOP 命令:從隊列頭部彈出元素並返回其值,如 LPOP queue:my-queue。處理空隊列:如果隊列為空,LPOP 返回 nil,可先檢查隊列是否存在再讀取元素。
