首個目標檢測擴散模型,比Faster R-CNN、DETR好,從隨機框直接檢測
扩散模型( Diffusion Model )作为深度生成模型中的新 SOTA,已然在图像生成任务中超越了原 SOTA:例如 GAN,并且在诸多应用领域都有出色的表现,如计算机视觉,NLP、分子图建模、时间序列建模等。
近日,来自香港大学的罗平团队、腾讯 AI Lab 的研究者联合提出一种新框架 DiffusionDet,将扩散模型应用于目标检测。据了解,还没有研究可以成功地将扩散模型应用于目标检测,可以说这是第一个采用扩散模型进行目标检测的工作。
DiffusionDet 的性能如何呢?在 MS-COCO 数据集上进行评估,使用 ResNet-50 作为骨干,在单一采样 step 下,DiffusionDet 实现 45.5 AP,显著优于 Faster R-CNN (40.2 AP), DETR (42.0 AP),并与 Sparse R-CNN (45.0 AP)相当。通过增加采样 step 的数量,进一步将 DiffusionDet 性能提高到 46.2 AP。此外,在 LVIS 数据集上,DiffusionDet 也表现良好,使用 swing - base 作为骨干实现了 42.1 AP。
- 论文地址:https://arxiv.org/pdf/2211.09788.pdf
- 项目地址 https://github.com/ShoufaChen/DiffusionDet
该研究发现在传统的目标检测里,存在一个缺陷,即它们依赖于一组固定的可学习查询。然后研究者就在思考:是否存在一种简单的方法甚至不需要可学习查询就能进行目标检测?
为了回答这一问题,本文提出了 DiffusionDet,该框架可以直接从一组随机框中检测目标,它将目标检测制定为从噪声框到目标框的去噪扩散过程。这种从 noise-to-box 的方法不需要启发式的目标先验,也不需要可学习查询,这进一步简化了目标候选,并推动了检测 pipeline 的发展。
如下图 1 所示,该研究认为 noise-to-box 范式类似于去噪扩散模型中的 noise-to-image 过程,后者是一类基于似然的模型,通过学习到的去噪模型逐步去除图像中的噪声来生成图像。
DiffusionDet 通过扩散模型解决目标检测任务,即将检测看作图像中 bounding box 位置 (中心坐标) 和大小 (宽度和高度) 空间上的生成任务。在训练阶段,将方差表(schedule)控制的高斯噪声添加到 ground truth box,得到 noisy box。然后使用这些 noisy box 从主干编码器(如 ResNet, Swin Transformer)的输出特征图中裁剪感兴趣区域(RoI)。最后,将这些 RoI 特征发送到检测解码器,该解码器被训练用来预测没有噪声的 ground truth box。在推理阶段,DiffusionDet 通过反转学习到的扩散过程生成 bounding box,它将噪声先验分布调整到 bounding box 上的学习分布。
方法概述
由于扩散模型迭代地生成数据样本,因此在推理阶段需要多次运行模型 f_θ。但是,在每一个迭代步骤中,直接在原始图像上应用 f_θ在计算上很困难。因此,研究者提出将整个模型分为两部分,即图像编码器和检测解码器,前者只运行一次以从原始输入图像 x 中提取深度特征表示,后者以该深度特征为条件,从噪声框 z_t 中逐步细化框预测。
图像编码器将原始图像作为输入,并为检测解码器提取其高级特征。研究者使用 ResNet 等卷积神经网络和 Swin 等基于 Transformer 的模型来实现 DiffusionDet。与此同时,特征金字塔网络用于为 ResNet 和 Swin 主干网络生成多尺度特征图。
檢測解碼器借鑒了Sparse R-CNN,將一組proposal 框作為輸入,從圖像編碼器生成的特徵圖中裁剪RoI 特徵,並將它們發送到檢測頭以獲得框回歸和分類結果。此外,此檢測解碼器由 6 個級聯階段組成。
訓練
在訓練過程中,研究者首先建構了從真值框到雜訊框的擴散過程,然後訓練模型來反轉這個過程。如下演算法 1 提供了 DiffusionDet 訓練過程的偽代碼。
真值框填入。對於現代目標偵測基準,感興趣實例的數量通常因影像而異。因此,研究者首先將一些額外的框填入原始真值框,這樣所有的框被總計為一個固定的數字 N_train。他們探索了幾種填充策略,例如重複現有真值框、連接隨機框或圖像大小的框。
框損壞。研究者將高斯噪聲添加到填充的真值框。雜訊尺度由下列公式(1)中的 α_t 控制,它在不同的時間步 t 中採用單調遞減的餘弦調度。
訓練損失。偵測解碼器將 N_train 損壞框作為輸入,預測 N_train 對類別分類和框座標的預測。同時在 N_train 預測集上應用集預測損失(set prediction loss)。
推理
DiffusionDet 的推理過程是從雜訊到目標框的去雜訊取樣過程。從高斯分佈中取樣的方塊開始,模型逐步細化其預測,具體如下演算法 2 所示。
取樣步驟。在每個取樣步驟中,將上一個取樣步驟中的隨機方塊或估計方塊傳送至偵測解碼器,以預測類別分類和方塊座標。在取得目前步驟的方塊後,採用 DDIM 來估算下一步驟的方塊。
框更新。為了使推理更好地與訓練保持一致,研究者提出了框架更新策略,透過用隨機方塊替換非預期的方塊以使它們恢復。具體來說,他們首先過濾掉分數低於特定閾值的非預期的框,然後將剩餘的框與從高斯分佈中採樣的新隨機框連接起來。
一次解決(Once-for-all)。由於隨機框設計,研究者可以使用任意數量的隨機框和取樣步驟來評估 DiffusionDet。作為比較,以往的方法在訓練和評估期間依賴相同數量的處理框,並且檢測解碼器在前向傳遞中僅使用一次。
實驗結果
在實驗部分,研究者首先展示了DiffusionDet 的Once-for-all 屬性,然後將DiffusionDet 與以往在MS-COCO 和LVIS 數據集上成熟的偵測器進行比較。
DiffusionDet 的主要功能在於對所有推理實例進行一次訓練。一旦模型經過訓練,它就可以用於更改推理中框的數量和樣本步驟數,如下圖 4 所示。 DiffusionDet 可以透過使用更多框或 / 和更多細化步驟來實現更高的準確度,但代價是延遲率更高。因此,研究者將單一 DiffusionDet 部署到多個場景中,並在不重新訓練網路的情況下獲得所需的速度 - 準確率權衡。
研究者将 DiffusionDet 与以往在 MS-COCO 和 LVIS 数据集上的检测器进行了比较,具体如下表 1 所示。他们首先将 DiffusionDet 的目标检测性能与以往在 MS-COCO 上的检测器进行了比较。结果显示,没有细化步骤的 DiffusionDet 使用 ResNet-50 主干网络实现了 45.5 AP,以较大的优势超越了以往成熟的方法,如 Faster R-CNN、RetinaNet、DETR 和 Sparse R-CNN。并且当主干网络的尺寸扩大时,DiffusionDet 显示出稳定的提升。
下表 2 中展示了在更具挑战性的 LVIS 数据集上的结果,可以看到,DiffusionDet 使用更多的细化步骤可以获得显著的增益。
更多实验细节请参阅原论文。
以上是首個目標檢測擴散模型,比Faster R-CNN、DETR好,從隨機框直接檢測的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

想像一下,一個人工智慧模型,不僅擁有超越傳統運算的能力,還能以更低的成本實現更有效率的效能。這不是科幻,DeepSeek-V2[1],全球最強開源MoE模型來了。 DeepSeek-V2是一個強大的專家混合(MoE)語言模型,具有訓練經濟、推理高效的特點。它由236B個參數組成,其中21B個參數用於啟動每個標記。與DeepSeek67B相比,DeepSeek-V2效能更強,同時節省了42.5%的訓練成本,減少了93.3%的KV緩存,最大生成吞吐量提高到5.76倍。 DeepSeek是一家探索通用人工智

谷歌力推的JAX在最近的基準測試中表現已經超過Pytorch和TensorFlow,7項指標排名第一。而且測試並不是JAX性能表現最好的TPU上完成的。雖然現在在開發者中,Pytorch依然比Tensorflow更受歡迎。但未來,也許有更多的大型模型會基於JAX平台進行訓練和運行。模型最近,Keras團隊為三個後端(TensorFlow、JAX、PyTorch)與原生PyTorch實作以及搭配TensorFlow的Keras2進行了基準測試。首先,他們為生成式和非生成式人工智慧任務選擇了一組主流

AI,的確正在改變數學。最近,一直十分關注這個議題的陶哲軒,轉發了最近一期的《美國數學學會通報》(BulletinoftheAmericanMathematicalSociety)。圍繞著「機器會改變數學嗎?」這個話題,許多數學家發表了自己的觀點,全程火花四射,內容硬核,精彩紛呈。作者陣容強大,包括菲爾茲獎得主AkshayVenkatesh、華裔數學家鄭樂雋、紐大電腦科學家ErnestDavis等多位業界知名學者。 AI的世界已經發生了天翻地覆的變化,要知道,其中許多文章是在一年前提交的,而在這一

波士頓動力Atlas,正式進入電動機器人時代!昨天,液壓Atlas剛「含淚」退出歷史舞台,今天波士頓動力就宣布:電動Atlas上崗。看來,在商用人形機器人領域,波士頓動力是下定決心要跟特斯拉硬剛一把了。新影片放出後,短短十幾小時內,就已經有一百多萬觀看。舊人離去,新角色登場,這是歷史的必然。毫無疑問,今年是人形機器人的爆發年。網友銳評:機器人的進步,讓今年看起來像人類的開幕式動作、自由度遠超人類,但這真不是恐怖片?影片一開始,Atlas平靜地躺在地上,看起來應該是仰面朝天。接下來,讓人驚掉下巴

本月初,來自MIT等機構的研究者提出了一種非常有潛力的MLP替代方法—KAN。 KAN在準確性和可解釋性方面表現優於MLP。而且它能以非常少的參數量勝過以更大參數量運行的MLP。例如,作者表示,他們用KAN以更小的網路和更高的自動化程度重現了DeepMind的結果。具體來說,DeepMind的MLP有大約300,000個參數,而KAN只有約200個參數。 KAN與MLP一樣具有強大的數學基礎,MLP基於通用逼近定理,而KAN基於Kolmogorov-Arnold表示定理。如下圖所示,KAN在邊上具

特斯拉機器人Optimus最新影片出爐,已經可以在工廠裡打工了。正常速度下,它分揀電池(特斯拉的4680電池)是這樣的:官方還放出了20倍速下的樣子——在小小的「工位」上,揀啊揀啊揀:這次放出的影片亮點之一在於Optimus在廠子裡完成這項工作,是完全自主的,全程沒有人為的干預。而且在Optimus的視角之下,它還可以把放歪了的電池重新撿起來放置,主打一個自動糾錯:對於Optimus的手,英偉達科學家JimFan給出了高度的評價:Optimus的手是全球五指機器人裡最靈巧的之一。它的手不僅有觸覺

這篇論文探討了在自動駕駛中,從不同視角(如透視圖和鳥瞰圖)準確檢測物體的問題,特別是如何有效地從透視圖(PV)到鳥瞰圖(BEV)空間轉換特徵,這一轉換是透過視覺轉換(VT)模組實施的。現有的方法大致分為兩種策略:2D到3D和3D到2D轉換。 2D到3D的方法透過預測深度機率來提升密集的2D特徵,但深度預測的固有不確定性,尤其是在遠處區域,可能會引入不準確性。而3D到2D的方法通常使用3D查詢來採樣2D特徵,並透過Transformer學習3D和2D特徵之間對應關係的注意力權重,這增加了計算和部署的

目標偵測在自動駕駛系統當中是一個比較成熟的問題,其中行人偵測是最早得以部署演算法之一。在多數論文當中已經進行了非常全面的研究。然而,利用魚眼相機進行環視的距離感知相對來說研究較少。由於徑向畸變大,標準的邊界框表示在魚眼相機當中很難實施。為了緩解上述描述,我們探索了擴展邊界框、橢圓、通用多邊形設計為極座標/角度表示,並定義一個實例分割mIOU度量來分析這些表示。所提出的具有多邊形形狀的模型fisheyeDetNet優於其他模型,並同時在用於自動駕駛的Valeo魚眼相機資料集上實現了49.5%的mAP
