目錄
強化學習的反思
首頁 科技週邊 人工智慧 強化學習是否言過其實?

強化學習是否言過其實?

Apr 13, 2023 am 09:31 AM
機器學習 強化學習 圍棋

譯者 | 李睿

審校 | 孫淑娟

可以想像一下,你正準備和朋友一起下西洋棋,但他不是人類,而是一個不了解##遊戲規則的電腦程式。 這個應用程式卻明白自己致力實現一個目標,就是在遊戲中獲 勝。

因為電腦程式不知道規則,所以開始下棋的招數是隨機的。其中有些招數完全沒有意義,而對你來說獲勝很容易。 在這裡假設你非常喜歡和這個朋友下西洋棋,以至於沉迷於這個遊戲。

電腦程式最終會,因為它會逐漸學會擊敗你的方法和招數字雖然假設這個場景看起來有些牽強,但它應該能讓你對強化學習(機器學習的一個領域)的大致工作原理有一個基本的了解。

強化學習是否言過其實?

# 強化學習到底有多智慧?

人類智力包含許多特徵,包括獲得知識、擴展智力能力的願望和直覺思考。當西洋棋冠軍加里·卡斯帕羅夫在輸給IBM公司的一台名為「深藍」(Deep Blue)的電腦時,人類的智慧受到了極大的質疑。除了吸引大眾的注意力之外,描繪機器人在未來統治人類的世界末日場景也佔據了主流意識。

然而,「深藍」並不是一個普通的對手。與這個計算程式下棋就像是與一個千歲的#人進行比賽,而他一生一直在#不停地下西洋棋。但「深藍」擅長玩一種特定的遊戲,而不是其他智性活動,如演奏樂器、撰寫著作、進行科學實驗、養育子女或修理汽車。

絕不是想貶#低「深藍色」 取得的成就。 與其相反,電腦在智力能力上超越人類的想法需要仔細的檢驗,首先要分析強化學習的工作機制。

強化學習是如何運作的

#如##上所述,強化學習是機器學習的子集,它涉及智慧代理在環境中如何行動以最大化累積獎勵的概念。

簡單地說,強化學習機器人接受獎懲機制的訓練,它們做出正確的動作會得到獎勵,做出錯誤的動作會受到懲罰。 強化學習機器不會「思考」如何採取更的行動,

# #它們

只是讓所有的行動成為可能,以最大限度地提高成功的機會。

強化學習是否言過其實?

強化學習的缺點

強化學習的主要缺點是它需要大量的資源來實現它的目標。強化學習在圍棋遊戲中的成功就說明了這一點。這是一款受歡迎的雙人遊戲,目標是使用棋子在棋盤上佔據最大區域,同時避免丟子。

AlphaGo Master是一款在圍棋比賽中擊敗人類棋手的電腦程序,它耗費大量的資金和人力,其中包括許多工程師,非常豐富的遊戲經驗以及256個GPU和128000個CPU。

在學習如何在比賽獲勝的過程中,需要投入大量的資源和精力。這就引出了一個問題:設計不能憑直覺思考的人工智慧是否合理?人工智慧研究不是應該嘗試模仿人類智慧嗎?

支持強化學習的一個論點是,人們不應該期望人工智慧系統像人類一樣行動,它用於解決複雜問題需要進一步發展。另一方面,反對強化學習的觀點是,人工智慧研究應該專注於讓機器做目前只有人類和動物才有能力做的事情。從這個角度來看,人工智慧與人類智慧的比較是恰當的。

量子強化學習

強化學習是一個新興的領域,據說可以解決上述的一些問題。量子強化學習(QRL)是一種加速運算的方法。

首先,量子強化學習(QRL)應該透過最佳化探索(發現策略)和開發(選擇最佳策略)階段來加速學習。目前的一些應用和提出的量子計算改進了數據庫搜索,將大數分解為質數,等等。

儘管量子強化學習(QRL)還沒有以突破性的方式出現,但它有望解決常規強化學習的一些重大挑戰。

強化學習是否言過其實?

強化學習的商業案例

#######如同上述的,強化學習研究和開發至關重要。以下是來自麥肯錫公司的一份調查報告中的有關強化學習的一些實際應用示例,強化學習可以:#############
  • 優化半導體和晶片設計,優化製造工藝,提高半導體產業的產量。
  • 提高工廠產量,優化物流以減少浪費和成本,提高農業利潤。
  • 縮短航空航太和國防工業新系統的上市時間。
  • 優化設計流程,提高汽車產業的生產效率。
  • 透過即時交易和定價策略增加收入,改善客戶體驗,並在金融服務中為客戶提供先進的個人化服務。
  • 優化礦山設計,管理發電,應用整體物流調度,最佳化作業,降低成本,提高產量。
  • 透過即時監控和精確鑽井提高產量,優化油輪行進路線,實現預測性維護,防止油氣產業的設備故障。
  • 促進藥物發現,優化研究流程,自動化生產和優化製藥業的生物方法。
  • 優化供應鏈,實施先進的庫存建模,為零售部門的客戶提供先進的個人化服務。
  • 優化和管理網絡,在電信業應用客戶個人化。
  • 優化運輸物流的路線、網路規劃、倉庫作業。
  • 使用下一代代理程式從網站提取資料。

強化學習的反思

#強化學習的能力可能是有限的,但它不會被高估。此外,隨著強化學習研究和開發專案的增加,幾乎每個經濟部門的潛在用例也在增加。

大規模採用強化學習依賴幾個因素,其中包括最佳化演算法設計、配置學習環境和運算能力的可用性。

原文標題:#Is reinforcement learning overhyped? 作者:Aleksandras Šulženko


#

以上是強化學習是否言過其實?的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

AI Hentai Generator

AI Hentai Generator

免費產生 AI 無盡。

熱門文章

R.E.P.O.能量晶體解釋及其做什麼(黃色晶體)
3 週前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳圖形設置
3 週前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您聽不到任何人,如何修復音頻
3 週前 By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解鎖Myrise中的所有內容
4 週前 By 尊渡假赌尊渡假赌尊渡假赌

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

15個值得推薦的開源免費圖片標註工具 15個值得推薦的開源免費圖片標註工具 Mar 28, 2024 pm 01:21 PM

圖像標註是將標籤或描述性資訊與圖像相關聯的過程,以賦予圖像內容更深層的含義和解釋。這個過程對於機器學習至關重要,它有助於訓練視覺模型以更準確地識別圖像中的各個元素。透過為圖像添加標註,使得電腦能夠理解圖像背後的語義和上下文,從而提高對圖像內容的理解和分析能力。影像標註的應用範圍廣泛,涵蓋了許多領域,如電腦視覺、自然語言處理和圖視覺模型具有廣泛的應用領域,例如,輔助車輛識別道路上的障礙物,幫助疾病的檢測和診斷透過醫學影像識別。本文主要推薦一些較好的開源免費的圖片標註工具。 1.Makesens

一文帶您了解SHAP:機器學習的模型解釋 一文帶您了解SHAP:機器學習的模型解釋 Jun 01, 2024 am 10:58 AM

在機器學習和資料科學領域,模型的可解釋性一直是研究者和實踐者關注的焦點。隨著深度學習和整合方法等複雜模型的廣泛應用,理解模型的決策過程變得尤為重要。可解釋人工智慧(ExplainableAI|XAI)透過提高模型的透明度,幫助建立對機器學習模型的信任和信心。提高模型的透明度可以透過多種複雜模型的廣泛應用等方法來實現,以及用於解釋模型的決策過程。這些方法包括特徵重要性分析、模型預測區間估計、局部可解釋性演算法等。特徵重要性分析可以透過評估模型對輸入特徵的影響程度來解釋模型的決策過程。模型預測區間估計

通透!機器學習各大模型原理的深度剖析! 通透!機器學習各大模型原理的深度剖析! Apr 12, 2024 pm 05:55 PM

通俗來說,機器學習模型是一種數學函數,它能夠將輸入資料映射到預測輸出。更具體地說,機器學習模型是一種透過學習訓練數據,來調整模型參數,以最小化預測輸出與真實標籤之間的誤差的數學函數。在機器學習中存在多種模型,例如邏輯迴歸模型、決策樹模型、支援向量機模型等,每種模型都有其適用的資料類型和問題類型。同時,不同模型之間存在著許多共通性,或者說有一條隱藏的模型演化的路徑。將聯結主義的感知機為例,透過增加感知機的隱藏層數量,我們可以將其轉化為深度神經網路。而對感知機加入核函數的話就可以轉換為SVM。這一

透過學習曲線辨識過擬合和欠擬合 透過學習曲線辨識過擬合和欠擬合 Apr 29, 2024 pm 06:50 PM

本文將介紹如何透過學習曲線來有效辨識機器學習模型中的過度擬合和欠擬合。欠擬合和過擬合1、過擬合如果一個模型對資料進行了過度訓練,以至於它從中學習了噪聲,那麼這個模型就被稱為過擬合。過度擬合模型非常完美地學習了每一個例子,所以它會錯誤地分類一個看不見的/新的例子。對於一個過度擬合的模型,我們會得到一個完美/接近完美的訓練集分數和一個糟糕的驗證集/測試分數。略有修改:"過擬合的原因:用一個複雜的模型來解決一個簡單的問題,從資料中提取雜訊。因為小資料集作為訓練集可能無法代表所有資料的正確表示。"2、欠擬合如

人工智慧在太空探索和人居工程中的演變 人工智慧在太空探索和人居工程中的演變 Apr 29, 2024 pm 03:25 PM

1950年代,人工智慧(AI)誕生。當時研究人員發現機器可以執行類似人類的任務,例如思考。後來,在1960年代,美國國防部資助了人工智慧,並建立了實驗室進行進一步開發。研究人員發現人工智慧在許多領域都有用武之地,例如太空探索和極端環境中的生存。太空探索是對宇宙的研究,宇宙涵蓋了地球以外的整個宇宙空間。太空被歸類為極端環境,因為它的條件與地球不同。要在太空中生存,必須考慮許多因素,並採取預防措施。科學家和研究人員認為,探索太空並了解一切事物的現狀有助於理解宇宙的運作方式,並為潛在的環境危機

使用C++實現機器學習演算法:常見挑戰及解決方案 使用C++實現機器學習演算法:常見挑戰及解決方案 Jun 03, 2024 pm 01:25 PM

C++中機器學習演算法面臨的常見挑戰包括記憶體管理、多執行緒、效能最佳化和可維護性。解決方案包括使用智慧指標、現代線程庫、SIMD指令和第三方庫,並遵循程式碼風格指南和使用自動化工具。實作案例展示如何利用Eigen函式庫實現線性迴歸演算法,有效地管理記憶體和使用高效能矩陣操作。

可解釋性人工智慧:解釋複雜的AI/ML模型 可解釋性人工智慧:解釋複雜的AI/ML模型 Jun 03, 2024 pm 10:08 PM

譯者|李睿審校|重樓人工智慧(AI)和機器學習(ML)模型如今變得越來越複雜,這些模型產生的產出是黑盒子-無法向利害關係人解釋。可解釋性人工智慧(XAI)致力於透過讓利害關係人理解這些模型的工作方式來解決這個問題,確保他們理解這些模型實際上是如何做出決策的,並確保人工智慧系統中的透明度、信任度和問責制來解決這個問題。本文探討了各種可解釋性人工智慧(XAI)技術,以闡明它們的基本原理。可解釋性人工智慧至關重要的幾個原因信任度和透明度:為了讓人工智慧系統被廣泛接受和信任,使用者需要了解決策是如何做出的

Flash Attention穩定嗎? Meta、哈佛發現其模型權重偏差呈現數量級波動 Flash Attention穩定嗎? Meta、哈佛發現其模型權重偏差呈現數量級波動 May 30, 2024 pm 01:24 PM

MetaFAIR聯合哈佛優化大規模機器學習時所產生的資料偏差,提供了新的研究架構。據所周知,大語言模型的訓練常常需要數月的時間,使用數百甚至上千個GPU。以LLaMA270B模型為例,其訓練總共需要1,720,320個GPU小時。由於這些工作負載的規模和複雜性,導致訓練大模型存在著獨特的系統性挑戰。最近,許多機構在訓練SOTA生成式AI模型時報告了訓練過程中的不穩定情況,它們通常以損失尖峰的形式出現,例如Google的PaLM模型訓練過程中出現了多達20次的損失尖峰。數值偏差是造成這種訓練不準確性的根因,

See all articles