目錄
什麼是損失函數?
損失函數與度量指標
為什麼要用損失函數?
迴歸問題
1、均方誤差(MSE)
2、平均絕對誤差(MAE)
3、均方根誤差(RMSE)
4、平均偏差誤差(MBE)
5、Huber損失
二元分類
8、Hinge Loss 和 Squared Hinge Loss (HL and SHL)
多分类
9、交叉熵(CE)
10、Kullback-Leibler 散度 (KLD)
首頁 後端開發 Python教學 十個常用的損失函數解釋以及Python程式碼實現

十個常用的損失函數解釋以及Python程式碼實現

Apr 13, 2023 am 09:37 AM
python 演算法 損失函數

什麼是損失函數?

損失函數是一種衡量模型與資料吻合程度的演算法。損失函數測量實際測量值和預測值之間差距的一種方式。損失函數的值越高預測就越錯誤,損失函數值越低則預測越接近真實值。對每個單獨的觀測(數據點)計算損失函數。將所有損失函數(loss function)的值取平均值的函數稱為代價函數(cost function),更簡單的理解就是損失函數是針對單一樣本的,而代價函數是針對所有樣本的。

損失函數與度量指標

一些損失函數也可以被用來作為評估指標。但是損失函數和度量指標(metrics)有不同的目的。雖然度量指標用於評估最終模型並比較不同模型的性能,但損失函數在模型建立階段用作正在創建的模型的最佳化器。損失函數指導模型如何最小化誤差。

也就是說損失函數是知道模型如何訓練的,而度量指標是說明模型的表現的。

為什麼要用損失函數?

由於損失函數測量的是預測值和實際值之間的差距,因此在訓練模型時可以使用它們來指導模型的改進(通常的梯度下降法)。在建構模型的過程中,如果特徵的權重發生了變化得到了更好或更差的預測,就需要利用損失函數來判斷模型中特徵的權重是否需要改變,以及改變的方向。

我們可以在機器學習中使用各種各樣的損失函數,這取決於我們試圖解決的問題的類型、資料品質和分佈以及我們使用的演算法,下圖為我們整理的10個常見的損失函數:

十個常用的損失函數解釋以及Python程式碼實現

迴歸問題

1、均方誤差(MSE)

均方誤差是指所有預測值和真實值之間的平方差,並將其平均值。常用於回歸問題。

def MSE (y, y_predicted):sq_error = (y_predicted - y) ** 2sum_sq_error = np.sum(sq_error)mse = sum_sq_error/y.sizereturn mse
登入後複製

2、平均絕對誤差(MAE)

作為預測值和真實值之間的絕對差的平均值來計算的。當數據有異常值時,這是比均方誤差更好的測量方法。

def MAE (y, y_predicted):error = y_predicted - yabsolute_error = np.absolute(error)total_absolute_error = np.sum(absolute_error)mae = total_absolute_error/y.sizereturn mae
登入後複製

3、均方根誤差(RMSE)

這個損失函數是均方誤差的平方根。如果我們不想懲罰更大的錯誤,這是一個理想的方法。

def RMSE (y, y_predicted):sq_error = (y_predicted - y) ** 2total_sq_error = np.sum(sq_error)mse = total_sq_error/y.sizermse = math.sqrt(mse)return rmse
登入後複製

4、平均偏差誤差(MBE)

#類似平均絕對誤差但不求絕對值。這個損失函數的缺點是負誤差和正誤差可以互相抵消,所以當研究人員知道誤差只有一個方向時,應用它會更好。

def MBE (y, y_predicted):error = y_predicted - ytotal_error = np.sum(error)mbe = total_error/y.sizereturn mbe
登入後複製

5、Huber損失

Huber損失函數結合了平均絕對誤差(MAE)和均方誤差(MSE)的優點。這是因為Hubber損失是一個有兩個分支的函數。一個分支應用於符合期望值的MAE,另一個分支應用於異常值。 Hubber Loss一般函數為:

十個常用的損失函數解釋以及Python程式碼實現

這裡的

十個常用的損失函數解釋以及Python程式碼實現

def hubber_loss (y, y_predicted, delta)delta = 1.35 * MAEy_size = y.sizetotal_error = 0for i in range (y_size):erro = np.absolute(y_predicted[i] - y[i])if error < delta:hubber_error = (error * error) / 2else:hubber_error = (delta * error) / (0.5 * (delta * delta))total_error += hubber_errortotal_hubber_error = total_error/y.sizereturn total_hubber_error
登入後複製

二元分類

##6、最大似然損失(Likelihood Loss/LHL)

此損失函數主要用於二值分類問題。將每一個預測值的機率相乘,得到一個損失值,相關的代價函數是所有觀測值的平均值。讓我們用以下二元分類的範例為例,其中類別為[0]或[1]。若輸出機率等於或大於0.5,則預測類別為[1],否則為[0]。輸出機率的範例如下:

[0.3 , 0.7 , 0.8 , 0.5 , 0.6 , 0.4]

對應的預測類別為:

[0 , 1 , 1 , 1 , 1 , 0]

而實際的類別為:

[0 , 1 , 1 , 0 , 1 , 0]

#現在將使用真實的類別和輸出機率來計算損失。如果真類別是[1],我們使用輸出機率,如果真類別是[0],我們使用1-機率:

((1–0.3) 0.7 0.8 (1–0.5) 0.6 (1– 0.4)) / 6 = 0.65

Python程式碼如下:

def LHL (y, y_predicted):likelihood_loss = (y * y_predicted) + ((1-y) * (y_predicted))total_likelihood_loss = np.sum(likelihood_loss)lhl = - total_likelihood_loss / y.sizereturn lhl
登入後複製

7、二元交叉熵(BCE)

這個函數是對數的似然損失的修正。數列的疊加可以懲罰那些非常有自信但是卻是錯誤的預測。二元交叉熵損失函數的一般公式為:

— (y . log (p) (1 — y) .​​ log (1 — p))

讓我們繼續使用上面例子的值:

輸出機率= [0.3、0.7、0.8、0.5、0.6、0.4]

實際的類別= [0,1,1,0,1,0]

— (0 . log (0.3) (1–0) . log (1–0.3)) = 0.155

— (1 . log(0.7) + (1–1) . log (0.3)) = 0.155

— (1 . log(0.8) + (1–1) . log (0.2)) = 0.097

— (0 . log (0.5) + (1–0) . log (1–0.5)) = 0.301

— (1 . log(0.6) + (1–1) . log (0.4)) = 0.222

— (0 . log (0.4) + (1–0) . log (1–0.4)) = 0.222

那么代价函数的结果为:

(0.155 + 0.155 + 0.097 + 0.301 + 0.222 + 0.222) / 6 = 0.192

Python的代码如下:

def BCE (y, y_predicted):ce_loss = y*(np.log(y_predicted))+(1-y)*(np.log(1-y_predicted))total_ce = np.sum(ce_loss)bce = - total_ce/y.sizereturn bce
登入後複製

8、Hinge Loss 和 Squared Hinge Loss (HL and SHL)

Hinge Loss被翻译成铰链损失或者合页损失,这里还是以英文为准。

Hinge Loss主要用于支持向量机模型的评估。错误的预测和不太自信的正确预测都会受到惩罚。 所以一般损失函数是:

l(y) = max (0 , 1 — t . y)

这里的t是真实结果用[1]或[-1]表示。

使用Hinge Loss的类应该是[1]或[-1](不是[0])。为了在Hinge loss函数中不被惩罚,一个观测不仅需要正确分类而且到超平面的距离应该大于margin(一个自信的正确预测)。如果我们想进一步惩罚更高的误差,我们可以用与MSE类似的方法平方Hinge损失,也就是Squared Hinge Loss。

如果你对SVM比较熟悉,应该还记得在SVM中,超平面的边缘(margin)越高,则某一预测就越有信心。如果这块不熟悉,则看看这个可视化的例子:

十個常用的損失函數解釋以及Python程式碼實現

如果一个预测的结果是1.5,并且真正的类是[1],损失将是0(零),因为模型是高度自信的。

loss= Max (0,1 - 1* 1.5) = Max (0, -0.5) = 0

十個常用的損失函數解釋以及Python程式碼實現

如果一个观测结果为0(0),则表示该观测处于边界(超平面),真实的类为[-1]。损失为1,模型既不正确也不错误,可信度很低。

loss = max (0 , 1–(-1) * 0) = max (0 , 1) = 1

十個常用的損失函數解釋以及Python程式碼實現

如果一次观测结果为2,但分类错误(乘以[-1]),则距离为-2。损失是3(非常高),因为我们的模型对错误的决策非常有信心(这个是绝不能容忍的)。

loss = max (0 , 1 — (-1) . 2) = max (0 , 1+2) = max (0 , 3) = 3

python代码如下:

#Hinge Lossdef Hinge (y, y_predicted):hinge_loss = np.sum(max(0 , 1 - (y_predicted * y)))return hinge_loss#Squared Hinge Lossdef SqHinge (y, y_predicted):sq_hinge_loss = max (0 , 1 - (y_predicted * y)) ** 2total_sq_hinge_loss = np.sum(sq_hinge_loss)return total_sq_hinge_loss
登入後複製

多分类

9、交叉熵(CE)

在多分类中,我们使用与二元交叉熵类似的公式,但有一个额外的步骤。首先需要计算每一对[y, y_predicted]的损失,一般公式为:

十個常用的損失函數解釋以及Python程式碼實現

如果我们有三个类,其中单个[y, y_predicted]对的输出是:

十個常用的損失函數解釋以及Python程式碼實現

这里实际的类3(也就是值=1的部分),我们的模型对真正的类是3的信任度是0.7。计算这损失如下:

Loss = 0 . log (0.1) + 0 . log (0.2) + 1 . log (0.7) = -0.155

为了得到代价函数的值,我们需要计算所有单个配对的损失,然后将它们相加最后乘以[-1/样本数量]。代价函数由下式给出:

十個常用的損失函數解釋以及Python程式碼實現

使用上面的例子,如果我们的第二对:

Loss = 0 . log (0.4) + 1. log (0.4) + 0. log (0.2) = -0.40

那么成本函数计算如下:

十個常用的損失函數解釋以及Python程式碼實現

使用Python的代码示例可以更容易理解:

def CCE (y, y_predicted):cce_class = y * (np.log(y_predicted))sum_totalpair_cce = np.sum(cce_class)cce = - sum_totalpair_cce / y.sizereturn cce
登入後複製

10、Kullback-Leibler 散度 (KLD)

又被简化称为KL散度,它类似于分类交叉熵,但考虑了观测值发生的概率。 如果我们的类不平衡,它特别有用。

十個常用的損失函數解釋以及Python程式碼實現

def KL (y, y_predicted):kl = y * (np.log(y / y_predicted))total_kl = np.sum(kl)return total_kl
登入後複製

以上就是常见的10个损失函数,希望对你有所帮助。

以上是十個常用的損失函數解釋以及Python程式碼實現的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

熱門話題

Java教學
1663
14
CakePHP 教程
1419
52
Laravel 教程
1313
25
PHP教程
1264
29
C# 教程
1237
24
PHP和Python:解釋了不同的範例 PHP和Python:解釋了不同的範例 Apr 18, 2025 am 12:26 AM

PHP主要是過程式編程,但也支持面向對象編程(OOP);Python支持多種範式,包括OOP、函數式和過程式編程。 PHP適合web開發,Python適用於多種應用,如數據分析和機器學習。

在PHP和Python之間進行選擇:指南 在PHP和Python之間進行選擇:指南 Apr 18, 2025 am 12:24 AM

PHP適合網頁開發和快速原型開發,Python適用於數據科學和機器學習。 1.PHP用於動態網頁開發,語法簡單,適合快速開發。 2.Python語法簡潔,適用於多領域,庫生態系統強大。

PHP和Python:深入了解他們的歷史 PHP和Python:深入了解他們的歷史 Apr 18, 2025 am 12:25 AM

PHP起源於1994年,由RasmusLerdorf開發,最初用於跟踪網站訪問者,逐漸演變為服務器端腳本語言,廣泛應用於網頁開發。 Python由GuidovanRossum於1980年代末開發,1991年首次發布,強調代碼可讀性和簡潔性,適用於科學計算、數據分析等領域。

Python vs. JavaScript:學習曲線和易用性 Python vs. JavaScript:學習曲線和易用性 Apr 16, 2025 am 12:12 AM

Python更適合初學者,學習曲線平緩,語法簡潔;JavaScript適合前端開發,學習曲線較陡,語法靈活。 1.Python語法直觀,適用於數據科學和後端開發。 2.JavaScript靈活,廣泛用於前端和服務器端編程。

sublime怎麼運行代碼python sublime怎麼運行代碼python Apr 16, 2025 am 08:48 AM

在 Sublime Text 中運行 Python 代碼,需先安裝 Python 插件,再創建 .py 文件並編寫代碼,最後按 Ctrl B 運行代碼,輸出會在控制台中顯示。

vscode在哪寫代碼 vscode在哪寫代碼 Apr 15, 2025 pm 09:54 PM

在 Visual Studio Code(VSCode)中編寫代碼簡單易行,只需安裝 VSCode、創建項目、選擇語言、創建文件、編寫代碼、保存並運行即可。 VSCode 的優點包括跨平台、免費開源、強大功能、擴展豐富,以及輕量快速。

visual studio code 可以用於 python 嗎 visual studio code 可以用於 python 嗎 Apr 15, 2025 pm 08:18 PM

VS Code 可用於編寫 Python,並提供許多功能,使其成為開發 Python 應用程序的理想工具。它允許用戶:安裝 Python 擴展,以獲得代碼補全、語法高亮和調試等功能。使用調試器逐步跟踪代碼,查找和修復錯誤。集成 Git,進行版本控制。使用代碼格式化工具,保持代碼一致性。使用 Linting 工具,提前發現潛在問題。

notepad 怎麼運行python notepad 怎麼運行python Apr 16, 2025 pm 07:33 PM

在 Notepad 中運行 Python 代碼需要安裝 Python 可執行文件和 NppExec 插件。安裝 Python 並為其添加 PATH 後,在 NppExec 插件中配置命令為“python”、參數為“{CURRENT_DIRECTORY}{FILE_NAME}”,即可在 Notepad 中通過快捷鍵“F6”運行 Python 代碼。

See all articles