為什麼應用人工智慧需要重大思維轉變
儘管人工智慧目前取得了令人鼓舞的進步,但它還沒有在許多行業中引起革命性的變化。在很多情況下,問題不一定出在技術上,而是出在人們感知科技的方式。
《權力與預測》是人工智慧專家撰寫的一本新書,探討了不同產業應用人工智慧技術的根本挑戰。作為他們廣受好評的《預測機器》的續集,這本書討論了企業在受益於人工智慧進步的全部潛力之前需要改變什麼。
從點解決方案和應用到人工智慧系統,行業專家研究了人工智慧在不同領域的成功和失敗。他們也從過去的技術革命中提供了重要的見解,並展示瞭如何從頭開始重新思考和設計人工智慧系統,可以幫助創造基於強大的機器學習和深度學習演算法的真正價值。
點解決方案vs人工智慧系統
如今的人工智慧系統是預測機器,這意味著它們可以根據過去的資料預測未來會發生什麼。這是每個數學模型都要做的。但由於大量數據和計算的可用性以及深度學習演算法的進步,人們已經能夠創建可以對圖像、文字和多維數據等複雜資訊進行預測的模型。
在《權力與預測》一書中,作者將人工智慧的價值分為三類:點解決方案、應用解決方案、系統解決方案。
到目前為止,人們看到的大多數都是點解決方案和應用程式解決方案。這些人工智慧系統取代了先前需要預測的任務。例如,在金融服務中,任務之一是預測哪些交易是詐騙的。經過正確資料訓練的機器學習模型可以接手這項任務。點解決方案是人工智慧的唾手可得的成果,因為採用它們只需要最小的投資和對底層系統的更改。
另一個點解決方案的例子是分析放射掃描。現在有幾個深度學習模型,可以從X光和MRI掃描中檢測出各種疾病,其水平與經驗豐富的放射科醫生相當。
他們正在自動化放射科醫生執行的眾多任務之一,而無需對潛在的患者護理系統進行任何更改。
人工智慧系統可以透過自動化當前應用程式和系統未解決的新任務和問題來提供更大的價值。然而,人工智慧系統需要一種空白的方法,在這種方法中,需要重新設計整個流程、工作流程和應用程序,不僅可以解決現有的問題,還可以解決新問題。為了讓它們發揮作用,人工智慧系統通常需要新的組織結構以及目標和激勵措施的一致性。這使得人工智慧系統更加困難、風險更大,但也更有回報。
《權力與預測》一書的作者寫道:「系統解決方案通常比點解決方案或應用解決方案更難實現,因為人工智慧增強的決策會影響系統中的其他決策。點解決方案和應用解決方案通常會強化現有系統,而係統解決方案則會顛覆現有解決方案,因此往往會導致破壞。然而,在許多情況下,系統解決方案可能會為人工智慧投資帶來最大的整體回報。”
人工智慧的中間時代
在《權力與預測》一書中,作者認為現在正處於人工智慧的“中間時代”,在見證了這項技術的力量之後,在它被廣泛採用之前。這就是為什麼點解決方案目前是人工智慧更有吸引力和更受歡迎的用例。
這是有歷史先例的。例如在19世紀後期,當電力開始工業化時,它的第一個應用是點解決方案。對工廠來說,這意味著用電動馬達取代蒸汽機來降低能源成本。改變電力來源並不需要重新設計工廠。
然而,電力的真正價值主張是將機器與電源分開。這使得新的工廠設計成為可能,這在蒸汽動力下是不可能的,而且它們的生產率更高,成本更低。但這種普及花了幾十年的時間,因為它需要根本性的改變,打破習慣,以及現有企業不願意進行的前期投資。那些抓住機會的企業家成功地佔據了領先地位,並佔領了後來取代舊市場的很大一部分市場。
人們可以在許多其他行業中看到這些變化,例如線上購物的興起,個人電腦的出現,以及從印刷媒體到數位媒體的轉變。
人工智慧是一種基礎設施技術,技術領導者將其影響與電力進行了比較。因此,這需要一種全新的心態和大膽的探索。
《權力與預測》一書的作者寫道:「人工智慧驅動的產業轉型需要時間,一開始怎麼做並不明顯。許多人可能會嘗試並失敗,因為他們誤解了需求,或者他們無法讓單位經濟運作起來。最終,有人會成功,並建立起盈利的途徑。其他人會試圖模仿。行業領導者將試圖保護自己的優勢。有時它會成功。無論如何,這個行業將會轉型,一如既往地總會有贏家和輸家。」
打破規則
《權力與預測》一書的作者表示,「當沒有什麼東西的時候,不會放棄。如果沒有必要的資訊來做出明智的選擇,就可以避免盲目做事的後果。因此,當人工智慧預測出現時,它的使用機會並不明顯,這並不令人驚訝。潛在的決策者在沒有這些資訊的基礎上搭建了一個腳手架。」
人工智慧的機會很難發現,因為它們通常隱藏在嚴格的規則和程序背後,這些規則和程序運作良好,並且已經建立了很長時間。這些規則彌補了資訊的不足。它們使人們能夠在不能夠預測準確結果的情況下做出決定。它們幫助建構系統,雖然不是最優的,但在許多情況下可靠地工作。
找到這些機會的關鍵是,首先要了解預測機器的力量,其次,找到預測可以取代既定規則的地方。作者在書中探討的一個非常有趣的例子是人工智慧在教育中的應用。
多虧了機器學習演算法和歷史數據,可以預測學生的表現,他們在哪裡會脫穎而出,在哪裡會遇到困難。這讓我們有機會為每個學生提供更多個人化的內容。
但這些預測模型在目前的教育體系中並沒有太大幫助,因為目前的教育體係是建立在基於年齡的課程基礎上的,每個班級只有一名教師。之所以建立這個系統,是因為教師沒有辦法透過學生的教育軌跡來準確衡量他們的個人學習能力。
為了能夠充分利用機器學習,人們需要以一種新的方式重新思考教育體系。這個新系統將以個人化討論、小組計畫和教師支持取代以年齡為基礎的課程,對整體教育和個人成長和發展產生更大的影響。
《權力與預測》的作者寫道:「基於年齡的課程規則是現代教育系統的黏合劑,因此,個人化學習內容的人工智慧只能在該系統中提供有限的好處。要釋放個性化教育人工智慧的潛力,主要挑戰不是建立預測模型,而是將教育從目前將系統粘合在一起的基於年齡的課程規則中分離出來。」
權力轉移
人工智慧的成功應用需要《權力與預測》一書作者所稱的“系統思維”,這與“任務思維”形成了對比。任務型思維模式關注的是節省成本。系統思維專注於價值創造。任務思維模式著重於將單一任務自動化。系統思維意識到需要重建基於機器預測和人類決策產生價值的系統。
人們已經在一些行業和亞馬遜和谷歌等大型科技公司看到了這種情況,這些公司已經形成了基於人工智慧預測推薦個人化內容的獲利系統。
也許系統思維模式的重要元素之一是隨著人工智慧的採用而發生的權力轉移。隨著體制的變化,有決策權的人也在改變。
《權力與預測》的作者寫道,「雖然人工智慧不能把決定權交給機器,但它可以改變由誰來做決定。機器沒有權力,但一旦部署,它們可以改變擁有有權力的人。當機器改變決策者時,底層系統也必須改變。製造機器的工程師需要了解他們嵌入到產品中的判斷的後果。那些過去在當下做決定的人可能不再需要了。」
作者在書中探討的一個假想例子是心臟病發作風險。目前,這種風險評估是透過在醫院進行測試來進行的,並由進行測試的專家做出決定。
假設能夠建立人工智慧系統,根據智慧手錶等穿戴式裝置收集的數據預測心臟病發作風險。然後,就有可能將這些預測從醫院急診室的分流空間轉移到病人的家中。在這種情況下,許多患者在被診斷出患有藥劑師或初級保健醫生可以在家中幫助治療的疾病後,將永遠不需要去醫院。
不管人們在圍繞人工智慧的科學和哲學辯論中處於什麼立場,人們都能認同的是,預測機器有很多東西可以提供,而如今只是觸及了表面。要充分利用它們的潛力,首先要回到繪圖板,重新思考如果人們有預測的能力,將如何設計系統。 ?
以上是為什麼應用人工智慧需要重大思維轉變的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

本站6月27日訊息,剪映是由位元組跳動旗下臉萌科技開發的一款影片剪輯軟體,依託於抖音平台且基本面向該平台用戶製作短影片內容,並相容於iOS、安卓、Windows 、MacOS等作業系統。剪映官方宣布會員體系升級,推出全新SVIP,包含多種AI黑科技,例如智慧翻譯、智慧劃重點、智慧包裝、數位人合成等。價格方面,剪映SVIP月費79元,年費599元(本站註:折合每月49.9元),連續包月則為59元每月,連續包年為499元每年(折合每月41.6元) 。此外,剪映官方也表示,為提升用戶體驗,向已訂閱了原版VIP

透過將檢索增強生成和語意記憶納入AI編碼助手,提升開發人員的生產力、效率和準確性。譯自EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG,作者JanakiramMSV。雖然基本AI程式設計助理自然有幫助,但由於依賴對軟體語言和編寫軟體最常見模式的整體理解,因此常常無法提供最相關和正確的程式碼建議。這些編碼助手產生的代碼適合解決他們負責解決的問題,但通常不符合各個團隊的編碼標準、慣例和風格。這通常會導致需要修改或完善其建議,以便將程式碼接受到應

想了解更多AIGC的內容,請造訪:51CTOAI.x社群https://www.51cto.com/aigc/譯者|晶顏審校|重樓不同於網路上隨處可見的傳統問題庫,這些問題需要跳脫常規思維。大語言模型(LLM)在數據科學、生成式人工智慧(GenAI)和人工智慧領域越來越重要。這些複雜的演算法提升了人類的技能,並在許多產業中推動了效率和創新性的提升,成為企業保持競爭力的關鍵。 LLM的應用範圍非常廣泛,它可以用於自然語言處理、文字生成、語音辨識和推薦系統等領域。透過學習大量的數據,LLM能夠產生文本

大型語言模型(LLM)是在龐大的文字資料庫上訓練的,在那裡它們獲得了大量的實際知識。這些知識嵌入到它們的參數中,然後可以在需要時使用。這些模型的知識在訓練結束時被「具體化」。在預訓練結束時,模型實際上停止學習。對模型進行對齊或進行指令調優,讓模型學習如何充分利用這些知識,以及如何更自然地回應使用者的問題。但是有時模型知識是不夠的,儘管模型可以透過RAG存取外部內容,但透過微調使用模型適應新的領域被認為是有益的。這種微調是使用人工標註者或其他llm創建的輸入進行的,模型會遇到額外的實際知識並將其整合

機器學習是人工智慧的重要分支,它賦予電腦從數據中學習的能力,並能夠在無需明確編程的情況下改進自身能力。機器學習在各個領域都有廣泛的應用,從影像辨識和自然語言處理到推薦系統和詐欺偵測,它正在改變我們的生活方式。機器學習領域存在著多種不同的方法和理論,其中最具影響力的五種方法被稱為「機器學習五大派」。這五大派分別為符號派、聯結派、進化派、貝葉斯派和類推學派。 1.符號學派符號學(Symbolism),又稱符號主義,強調利用符號進行邏輯推理和表達知識。該學派認為學習是一種逆向演繹的過程,透過現有的

編輯|ScienceAI問答(QA)資料集在推動自然語言處理(NLP)研究中發揮著至關重要的作用。高品質QA資料集不僅可以用於微調模型,也可以有效評估大語言模型(LLM)的能力,尤其是針對科學知識的理解和推理能力。儘管目前已有許多科學QA數據集,涵蓋了醫學、化學、生物等領域,但這些數據集仍有一些不足之處。其一,資料形式較為單一,大多數為多項選擇題(multiple-choicequestions),它們易於進行評估,但限制了模型的答案選擇範圍,無法充分測試模型的科學問題解答能力。相比之下,開放式問答

編輯|KX在藥物研發領域,準確有效地預測蛋白質與配體的結合親和力對於藥物篩選和優化至關重要。然而,目前的研究並沒有考慮到分子表面訊息在蛋白質-配體相互作用中的重要作用。基於此,來自廈門大學的研究人員提出了一種新穎的多模態特徵提取(MFE)框架,該框架首次結合了蛋白質表面、3D結構和序列的信息,並使用交叉注意機制進行不同模態之間的特徵對齊。實驗結果表明,該方法在預測蛋白質-配體結合親和力方面取得了最先進的性能。此外,消融研究證明了該框架內蛋白質表面資訊和多模態特徵對齊的有效性和必要性。相關研究以「S

本站8月1日消息,SK海力士今天(8月1日)發布博文,宣布將出席8月6日至8日,在美國加州聖克拉拉舉行的全球半導體記憶體峰會FMS2024,展示諸多新一代產品。未來記憶體和儲存高峰會(FutureMemoryandStorage)簡介前身是主要面向NAND供應商的快閃記憶體高峰會(FlashMemorySummit),在人工智慧技術日益受到關注的背景下,今年重新命名為未來記憶體和儲存高峰會(FutureMemoryandStorage),以邀請DRAM和儲存供應商等更多參與者。新產品SK海力士去年在
