目錄
面向結構化圖資料的異常檢測:背景與挑戰
另闢蹊徑:譜域視角下的圖異常檢測
图异常检测的新利器:Beta 小波图神经网络
总结
首頁 科技週邊 人工智慧 基於結構化資料的異常檢測再思考: 我們究竟需要怎樣的圖神經網路?

基於結構化資料的異常檢測再思考: 我們究竟需要怎樣的圖神經網路?

Apr 13, 2023 pm 01:43 PM
數據 結構

基於結構化資料的異常檢測再思考: 我們究竟需要怎樣的圖神經網路?

基於結構化資料的異常檢測再思考: 我們究竟需要怎樣的圖神經網路?

論文網址:https://arxiv.org/abs/2205.15508

程式碼位址:https://github. com/squareRoot3/Rethinking-Anomaly-Detection

面向結構化圖資料的異常檢測:背景與挑戰

異常檢測是資料探勘的經典任務之一。分析異常數據有助於企業或使用者理解背後的形成機制,從而做出相應決策,避免損失。隨著網路發展,面向結構化資料的異常檢測,即圖異常檢測,受到越來越多關注。

圖異常檢測具體可定義為:尋找圖上的少部分物件(節點、邊、子圖等),它們與其餘大多數物件有著不同分佈規律。 本文著重於圖上異常節點的偵測任務 。相較於傳統的異常檢測方法,圖異常檢測能夠利用不同實體之間的關聯訊息,更好服務於網路安全、詐欺檢測、水軍檢測、金融風控、故障監測等實際場景。

下圖直觀對比了傳統異常檢測與面向圖的異常檢測任務之間的差異。

基於結構化資料的異常檢測再思考: 我們究竟需要怎樣的圖神經網路?

圖 1:傳統例外狀況偵測與面向圖的例外偵測任務比較。

近年來,圖神經網路成為分析處理結構化資料的一大利器。圖神經網路透過學習包含節點自身特徵和鄰居資訊的嵌入表示,來更好完成分類、重建、回歸等下游任務。

然而,通用的圖神經網路(如圖卷積網路等)主要針對正常資料設計,在異常檢測任務上容易遇到「過平滑」(over-smoothing) 問題,即異常節點和正常節點的表達難以區分,影響異常檢測的準確率。例如,在金融詐欺偵測的實際應用中,異常帳戶通常會先與多個正常帳戶進行正常交易來偽裝自己,降低自身可疑程度,之後再展開違規交易。這種 「關係詐欺」 進一步增加了圖異常檢測的難度。

為了解決上述困難,研究者專門提出 針對異常檢測任務的圖神經網路模型 ,包括(1)利用注意力機制從多個視圖聚合鄰域資訊;(2 )利用重採樣方法聚合不同類別的鄰近資訊;(3)設計額外的損失函數來輔助圖神經網路的訓練等。這些方法主要從空域的角度設計圖神經網路來處理異常,但並沒有人從譜域的角度考慮過這個問題。

事實證明,選擇不同的頻譜濾波器(spectral filter)會影響圖神經網路的表達能力,進而造成效能上的差異。

另闢蹊徑:譜域視角下的圖異常檢測

為了填補現有研究的空白,本文希望回答這樣一個問題: 如何為圖神經網路量身定做一個頻譜濾波器用於異常檢測?

本文首次嘗試了從 譜域視角 分析圖上的異常數據,並觀察到:異常數據會導致頻譜能量的“右移”,即能量更少集中在低頻,同時更集中在高頻。

為了視覺化這個右移現象,研究者首先隨機產生了一個有500 個節點的Barabási–Albert 圖(BA 圖),並假設圖上正常節點和異常節點的屬性分別遵循兩個不同的高斯分佈,其中異常節點的變異數較大。

圖片的上半部展示了包含不同程度異常的資料在 BA 圖上的分佈,而下半部則展示了對應的頻譜能量分佈。其中,長條圖代表對應頻譜區間的能量佔比,折線圖代表從零到該點頻域能量的累積佔比。

基於結構化資料的異常檢測再思考: 我們究竟需要怎樣的圖神經網路?

圖 2:頻譜能量 「右移」 現象的視覺化。

從上圖可以看出,當異常資料佔比為 0% 時,大部分能量集中在低頻部分(λ

在实际场景中,异常数据通常遵循更加复杂的分布。在四个大规模图异常检测数据集上,研究者同样证实了 “右移” 现象的存在。以下图亚马逊异常用户检测数据集为例,当删除数据中一部分异常节点后,频谱上低频能量显著增多,同时高频则相应减少。如果删除同样数量的随机节点,频谱的能量分布几乎没有变化。这进一步验证了异常数据是频谱能量 “右移” 的关键。

基於結構化資料的異常檢測再思考: 我們究竟需要怎樣的圖神經網路?

图 3 : 亚马逊异常用户检测数据集上删除不同节点对频谱能量分布的影响:原图 (The Original),删除随机节点 (Drop-Random),删除异常节点 (Drop-Anomaly)

图异常检测的新利器:Beta 小波图神经网络

上节的分析表明,在图异常检测时需要关注 “右移” 效应。例如上图亚马逊数据集中,特征值 λ=1 附近的频谱信息与异常数据有较大关联。为了更好地捕获异常信息,图神经网络需要具备带通滤波器的性质,只保留 λ=1 附近的信号同时过滤其余信号。

遗憾的是,现有的图神经网络大多属于低通滤波器或者自适应滤波器,它们无法保证带通性质。其中自适应滤波器虽然具有拟合任意函数的能力,但在异常检测中同样可能退化为低通滤波器。这是因为在整个数据集中,异常数据对应的高频信息占比较小,而大部分频谱能量仍然集中在低频。

为了更好处理异常数据造成的 “右移”,研究者提出了一种图异常检测的新方法 —— Beta 小波图神经网络 (BWGNN) 。通过借鉴 Hammond 图小波理论,他们基于 Beta 函数设计了新的小波核作为图神经网络的频谱滤波器。

相比于常用的热核 (Heat Kernel) 函数,Beta 函数作为小波核不仅符合带通滤波器的要求,还具有更好的频域局部性与空域局部性。下图对比了热核小波与 Beta 核小波的区别。

基於結構化資料的異常檢測再思考: 我們究竟需要怎樣的圖神經網路?

图 4:热核小波与 Beta 核小波在谱域(左)和空域(右)上的对比,Beta 函数具有更好的带通与局部性质。

本文 在四个大规模图异常检测数据集上验证了 BWGNN 的性能 。其中,Yelp 数据集面向点评网站异常评论检测,Amazon 数据集面向电商平台异常用户检测,T-Finance 数据集面向交易网络异常用户检测,T-Social 数据集面向社交网络异常用户检测,包含多达五百万个节点和七千万条边。

从下表可以看出,与传统分类模型、通用图神经网络和专门的图异常检测模型相比,BWGNN 在 40% 训练数据和 1% 训练数据(半监督)两个场景下均取得更好的效果。在运行效率上,BWGNN 与大部分通用图神经网络耗时接近,比其余图异常检测模型更高效。

基於結構化資料的異常檢測再思考: 我們究竟需要怎樣的圖神經網路?

基於結構化資料的異常檢測再思考: 我們究竟需要怎樣的圖神經網路?

总结

本文中,研究者发现图上异常节点的出现会导致频谱能量 “右移”,为面向结构化数据的异常检测提供了一种新视角。基于该发现,本文提出了图异常检测的新工具 ——Beta 小波图神经网络 (BWGNN)。它通过专门设计的带通滤波器来捕获 “右移” 产生的高频异常信息,在多个数据集上取得了最优效果。

在实际落地中,图异常检测通常是一个复杂的系统工程,但选择合适的图神经网络是影响系统性能的一个关键因素。研究者提出的 BWGNN 设计精简、复杂度低、易于替换,是图神经网络的一项新选择。

以上是基於結構化資料的異常檢測再思考: 我們究竟需要怎樣的圖神經網路?的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

使用ddrescue在Linux上恢復數據 使用ddrescue在Linux上恢復數據 Mar 20, 2024 pm 01:37 PM

DDREASE是一種用於從檔案或區塊裝置(如硬碟、SSD、RAM磁碟、CD、DVD和USB儲存裝置)復原資料的工具。它將資料從一個區塊設備複製到另一個區塊設備,留下損壞的資料區塊,只移動好的資料區塊。 ddreasue是一種強大的恢復工具,完全自動化,因為它在恢復操作期間不需要任何干擾。此外,由於有了ddasue地圖文件,它可以隨時停止和恢復。 DDREASE的其他主要功能如下:它不會覆寫恢復的數據,但會在迭代恢復的情況下填補空白。但是,如果指示工具明確執行此操作,則可以將其截斷。將資料從多個檔案或區塊還原到單

開源!超越ZoeDepth! DepthFM:快速且精確的單目深度估計! 開源!超越ZoeDepth! DepthFM:快速且精確的單目深度估計! Apr 03, 2024 pm 12:04 PM

0.這篇文章乾了啥?提出了DepthFM:一個多功能且快速的最先進的生成式單目深度估計模型。除了傳統的深度估計任務外,DepthFM還展示了在深度修復等下游任務中的最先進能力。 DepthFM效率高,可以在少數推理步驟內合成深度圖。以下一起來閱讀這項工作~1.論文資訊標題:DepthFM:FastMonocularDepthEstimationwithFlowMatching作者:MingGui,JohannesS.Fischer,UlrichPrestel,PingchuanMa,Dmytr

如何多條件使用Excel過濾功能 如何多條件使用Excel過濾功能 Feb 26, 2024 am 10:19 AM

如果您需要了解如何在Excel中使用具有多個條件的篩選功能,以下教學將引導您完成對應步驟,確保您可以有效地篩選資料和排序資料。 Excel的篩選功能是非常強大的,能夠幫助您從大量資料中提取所需的資訊。這個功能可以根據您設定的條件,過濾資料並只顯示符合條件的部分,讓資料的管理變得更有效率。透過使用篩選功能,您可以快速找到目標數據,節省了尋找和整理數據的時間。這個功能不僅可以應用在簡單的資料清單上,還可以根據多個條件進行篩選,幫助您更精準地定位所需資訊。總的來說,Excel的篩選功能是一個非常實用的

Google狂喜:JAX性能超越Pytorch、TensorFlow!或成GPU推理訓練最快選擇 Google狂喜:JAX性能超越Pytorch、TensorFlow!或成GPU推理訓練最快選擇 Apr 01, 2024 pm 07:46 PM

谷歌力推的JAX在最近的基準測試中表現已經超過Pytorch和TensorFlow,7項指標排名第一。而且測試並不是JAX性能表現最好的TPU上完成的。雖然現在在開發者中,Pytorch依然比Tensorflow更受歡迎。但未來,也許有更多的大型模型會基於JAX平台進行訓練和運行。模型最近,Keras團隊為三個後端(TensorFlow、JAX、PyTorch)與原生PyTorch實作以及搭配TensorFlow的Keras2進行了基準測試。首先,他們為生成式和非生成式人工智慧任務選擇了一組主流

iPhone上的蜂窩數據網路速度慢:修復 iPhone上的蜂窩數據網路速度慢:修復 May 03, 2024 pm 09:01 PM

在iPhone上面臨滯後,緩慢的行動數據連線?通常,手機上蜂窩互聯網的強度取決於幾個因素,例如區域、蜂窩網絡類型、漫遊類型等。您可以採取一些措施來獲得更快、更可靠的蜂窩網路連線。修復1–強制重啟iPhone有時,強制重啟設備只會重置許多內容,包括蜂窩網路連線。步驟1–只需按一次音量調高鍵並放開即可。接下來,按降低音量鍵並再次釋放它。步驟2–過程的下一部分是按住右側的按鈕。讓iPhone完成重啟。啟用蜂窩數據並檢查網路速度。再次檢查修復2–更改資料模式雖然5G提供了更好的網路速度,但在訊號較弱

特斯拉機器人進廠打工,馬斯克:手的自由度今年將達到22個! 特斯拉機器人進廠打工,馬斯克:手的自由度今年將達到22個! May 06, 2024 pm 04:13 PM

特斯拉機器人Optimus最新影片出爐,已經可以在工廠裡打工了。正常速度下,它分揀電池(特斯拉的4680電池)是這樣的:官方還放出了20倍速下的樣子——在小小的「工位」上,揀啊揀啊揀:這次放出的影片亮點之一在於Optimus在廠子裡完成這項工作,是完全自主的,全程沒有人為的干預。而且在Optimus的視角之下,它還可以把放歪了的電池重新撿起來放置,主打一個自動糾錯:對於Optimus的手,英偉達科學家JimFan給出了高度的評價:Optimus的手是全球五指機器人裡最靈巧的之一。它的手不僅有觸覺

超級智能體生命力覺醒!可自我更新的AI來了,媽媽再也不用擔心資料瓶頸難題 超級智能體生命力覺醒!可自我更新的AI來了,媽媽再也不用擔心資料瓶頸難題 Apr 29, 2024 pm 06:55 PM

哭死啊,全球狂煉大模型,一網路的資料不夠用,根本不夠用。訓練模型搞得跟《飢餓遊戲》似的,全球AI研究者,都在苦惱怎麼才能餵飽這群資料大胃王。尤其在多模態任務中,這問題尤其突出。一籌莫展之際,來自人大系的初創團隊,用自家的新模型,率先在國內把「模型生成數據自己餵自己」變成了現實。而且還是理解側和生成側雙管齊下,兩側都能產生高品質、多模態的新數據,對模型本身進行數據反哺。模型是啥?中關村論壇上剛露面的多模態大模型Awaker1.0。團隊是誰?智子引擎。由人大高瓴人工智慧學院博士生高一鑷創立,高

阿里7B多模態文件理解大模型拿下新SOTA 阿里7B多模態文件理解大模型拿下新SOTA Apr 02, 2024 am 11:31 AM

多模態文件理解能力新SOTA!阿里mPLUG團隊發布最新開源工作mPLUG-DocOwl1.5,針對高解析度圖片文字辨識、通用文件結構理解、指令遵循、外部知識引入四大挑戰,提出了一系列解決方案。話不多說,先來看效果。複雜結構的圖表一鍵識別轉換為Markdown格式:不同樣式的圖表都可以:更細節的文字識別和定位也能輕鬆搞定:還能對文檔理解給出詳細解釋:要知道,“文檔理解”目前是大語言模型實現落地的一個重要場景,市面上有許多輔助文檔閱讀的產品,有的主要透過OCR系統進行文字識別,配合LLM進行文字理

See all articles