目錄
NLP也來仿生學
首頁 科技週邊 人工智慧 論文修改100遍也別慌! Meta發布全新寫作語言模型PEER:參考文獻都會加

論文修改100遍也別慌! Meta發布全新寫作語言模型PEER:參考文獻都會加

Apr 13, 2023 pm 03:55 PM
ai 模型

2020年5月至今,GPT-3發布近兩年半的時間裡,在其神奇的文本生成能力加持下,已經能夠很好地輔助人類進行寫作了。

但GPT-3說到底也就是個文本生成模型,與人類的寫作過程可以說是完全不同了。

例如要寫一篇論文或作文,我們需要先在腦海裡建構一個框架,查相關資料,打草稿,再找導師不斷地修改​​、潤飾文字,期間可能還會修改思路,最終才可能成為一篇好文章。

而生成模型得到的文本也就是能滿足文法要求,在內容編排上就毫無邏輯,也沒有自我修改的能力,所以讓AI獨立寫作文這件事還很遙遠。

最近Meta AI Research和卡內基美隆大學的研究人員提出一個新的文本生成模型PEER(計劃Plan,編輯Edit,解釋Explain,重複Repeat),完全模擬人類寫作文的過程,從打草稿、徵求建議到編輯文本,再不斷迭代。

論文修改100遍也別慌! Meta發布全新寫作語言模型PEER:參考文獻都會加

論文網址:https://arxiv.org/abs/2208.11663

PEER解決了傳統語言模型只會生成最終結果,並且產生文字無法控制的問題,透過輸入自然語言命令,PEER可以對生成文字進行修改。

論文修改100遍也別慌! Meta發布全新寫作語言模型PEER:參考文獻都會加

最重要的是,研究人員訓練了多個PEER的實例,能夠填補寫作過程中的多個環節,藉此可以使用自訓練(self-training )技術提高訓練資料的品質、數量以及多樣性。

能產生訓練數據,也就代表PEER的潛力遠不止寫作文那麼簡單,還可以在其他沒有編輯歷史的領域使用PEER,讓它自己逐漸提高遵循指令、編寫有用評論和解釋其行為的能力。

NLP也來仿生學

大型神經網路在用自然語言進行預訓練後,文本生成的效果已經非常強了,但這些模型的生成方式基本上就是從左到右一次性輸出結果文本,與人類寫作的迭代過程有很大不同。

一次性生成也有很多弊端,例如無法追溯文本中的句子進行修改或完善,也無法解釋某句文本的生成原因,並且檢驗生成文本的正確性也很難,結果中經常會生成幻覺(hallucinate)內容,即不符合事實的文字。這些缺陷也限制了模型與人類合作寫作的能力,因為人類需要的是連貫且符合事實的文本。

PEER模型透過在文本的「編輯歷史」上進行訓練,使得模型能夠模擬人類的寫作過程。

論文修改100遍也別慌! Meta發布全新寫作語言模型PEER:參考文獻都會加

1、PEER模型運行時,需要使用者或模型指定一個計劃(Plan),透過自然語言描述他們想要執行的行動(action),比如說add some information或fix grammar errors;

2、然後透過編輯(Edit)文字來實現這一行動;

3、模型可以用自然語言和指向相關資源來解釋(Explain)該次編輯結果,例如在文末加上一個參考文獻;

4、重複(Repeat)該過程,直到生成的文本不再需要進一步的更新。

這種迭代的方法不僅使該模型可以將寫一個連貫、一致、事實性的文本這一複雜的任務分解成多個較容易的子任務,還允許人類在生成過程中的任何時刻幹預,引導模型朝著正確的方向發展,提供使用者的計劃和評論,或自己上手進行編輯。

論文修改100遍也別慌! Meta發布全新寫作語言模型PEER:參考文獻都會加

透過方法描述就可以看出來,功能實現上最難的並不是用Transformer搭建模型,而是找訓練數據,想要找到能夠以訓練大型語言模型所需的規模來學習這一過程的資料顯然是很困難的,因為大部分網站都沒有提供編輯歷史,所以透過爬蟲獲得的網頁沒辦法作為訓練資料。

即使透過爬蟲取得不同時間相同網頁作為編輯歷史也不可行,因為沒有對該次編輯做出計劃或解釋的相關文本。

PEER與先前的迭代編輯方法類似,使用維基百科作為主要編輯和相關評論的資料來源,因為維基百科提供了完整的編輯歷史,包括對各種主題的評論,而且規模很大,文章中經常包含引文,對尋找相關文件很有幫助。

但僅依靠維基百科作為訓練資料的唯一來源也存在各種缺點:

1、僅使用維基百科訓練得到的模型在預期文本內容的樣子和預測的計劃和編輯方面需要和維基百科相似;

2、維基百科中的評論是有噪音的,因此在許多情況下,評論並不是計劃或解釋的恰當輸入;

3、維基百科中的許多段落不包含任何引文,雖然這種背景資訊的缺乏可以透過使用檢索系統來彌補,但即使這樣的系統也可能無法為許多編輯找到支持性的背景資訊。

研究人員提出了一個簡單的方法來解決因維基百科是唯一的評論編輯歷史來源而產生的所有問題:即訓練多個PEER實例,並用這些實例學習填充編輯過程的各個環節。這些模型可以用來產生合成資料作為訓練語料庫中缺失部分的替代品。

最終訓練得到四個encoder-decoder模型:

論文修改100遍也別慌! Meta發布全新寫作語言模型PEER:參考文獻都會加

# 1、PEER-Edit的輸入為文字x和一組文檔,模型輸出為計劃和編輯後的文本,其中p為計劃文本。

論文修改100遍也別慌! Meta發布全新寫作語言模型PEER:參考文獻都會加

2、PEER-Undo的輸入為編輯後的文字和一組文檔,模型輸出結果為是否撤銷該次編輯。

3、PEER-Explain用來產生該次編輯的解釋,輸入為來源文字、編輯後的文字和一組相關文件。

4、 PEER-Document輸入原始文字、編輯後的文字和計劃,模型輸出為此編輯中最有用的背景資訊。

PEER的所有變體模型都用來產生合成數據,既產生缺失的部分來補充的訓練數據,也用來取代現有數據中的「低質量」部分。

為了能夠對任意文字資料進行訓練,即使該段落文字沒有編輯歷史,也使用PEER-Undo來產生合成的「後向」編輯,即對原始文字反覆應用PEER-Undo直到文字為空,再呼叫PEER-Edit在相反的方向訓練。

在產生計畫時,使用PEER-Explain來修正語料庫中許多低品質的評論,或處理沒有評論的文字。從PEER-Explain的輸出中隨機採樣多個結果作為“潛在的計劃”,透過計算實際編輯的似然機率,並選擇機率最高的作為新計劃。

如果對於特定編輯操作無法找到相關文檔,則使用PEER-Document產生一組合成的文檔,包含執行該次編輯操作的資訊。最關鍵的是,僅在訓練PEER-Edit這麼做,在推理階段並不提供任何合成文件。

為了提高生成的計劃、編輯和文件的品質和多樣性,研究人員還實現了一個控制機制,即在模型被訓練生成的輸出序列中預置特定的控制標記,然後在推理過程中使用這些控制標記來指導模型的生成,標記包括:

1、type用來控制PEER-Explain生成的文本類型,可選值為instructon(輸出必須以不定式開頭to .. ..)和other;

2、length, 控制PEER-Explain的輸出長度,可選值包括s(少於2個字), m(2-3個字),l(4- 5個字)和xl(多於或等於6個字);

3、overlap, 是否PEER-Explain產生的字可以與編輯文字重複,可選值為true和false;

4、words,用來控制PEER-Undo在源文本和編輯後文本之間不同詞的個數,可選值為所有整數;

5、contains,用來確保PEER- Document輸出的文字包含某個substring

PEER沒有對PEER-edit引入控制符,即沒有假定使用者可能會用模型解決編輯任務的類型,使得模型更加通用。

在實驗比較階段,PEER使用LM-Adapted T5的3B參數版本預訓練初始化。

為了評估了PEER在不同領域中遵循一系列計劃、利用所提供的文檔和進行編輯的能力,特別是在沒有編輯歷史的領域中的表現,文中引入了一個新的數據集Natural Edits,一個針對不同文本類型和領域的自然發生的編輯的集合。

資料從三個英文網路資源收集取得:從維基百科收集百科全書式的頁面,從Wikinews收集新聞文章,從StackExchange的烹飪、園藝、法律、電影、政治、旅遊和工作場所子論壇收集問題,所有這些網站都提供了帶有評論的編輯歷史,這些評論詳細說明了編輯的意圖,並將其作為計劃提供給模型。

論文修改100遍也別慌! Meta發布全新寫作語言模型PEER:參考文獻都會加

在Wikinews和StackExchange子集的訓練中,只提供純文字數據,而非實際的編輯,從而測試在沒有編輯歷史的領域的編輯能力。

實驗結果可以看出PEER的表現在一定程度上超過了所有的基線,而計畫和文件提供了模型能夠使用的互補資訊

論文修改100遍也別慌! Meta發布全新寫作語言模型PEER:參考文獻都會加

 在Natural Edits的所有子集上評估PEER後可以發現,計劃對各領域都有很大的幫助,這表明理解維基百科編輯中的計劃的能力可以直接轉移到其他領域。重要的是,在Natural Edits的所有子集上,PEER的領域適應性變體明顯優於常規的PEER,尤其是在園藝、政治和電影子集上有很大的改進(分別為84%、71 %和48%的EM-Diff),也顯示了在不同領域中應用PEER時,產生合成編輯的有效性。

論文修改100遍也別慌! Meta發布全新寫作語言模型PEER:參考文獻都會加

###########

以上是論文修改100遍也別慌! Meta發布全新寫作語言模型PEER:參考文獻都會加的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

<🎜>:泡泡膠模擬器無窮大 - 如何獲取和使用皇家鑰匙
4 週前 By 尊渡假赌尊渡假赌尊渡假赌
北端:融合系統,解釋
4 週前 By 尊渡假赌尊渡假赌尊渡假赌
Mandragora:巫婆樹的耳語 - 如何解鎖抓鉤
3 週前 By 尊渡假赌尊渡假赌尊渡假赌

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

熱門話題

Java教學
1671
14
CakePHP 教程
1428
52
Laravel 教程
1331
25
PHP教程
1276
29
C# 教程
1256
24
給MySQL表添加和刪除字段的操作步驟 給MySQL表添加和刪除字段的操作步驟 Apr 29, 2025 pm 04:15 PM

在MySQL中,添加字段使用ALTERTABLEtable_nameADDCOLUMNnew_columnVARCHAR(255)AFTERexisting_column,刪除字段使用ALTERTABLEtable_nameDROPCOLUMNcolumn_to_drop。添加字段時,需指定位置以優化查詢性能和數據結構;刪除字段前需確認操作不可逆;使用在線DDL、備份數據、測試環境和低負載時間段修改表結構是性能優化和最佳實踐。

數字虛擬幣交易平台top10 安全可靠的十大數字貨幣交易所 數字虛擬幣交易平台top10 安全可靠的十大數字貨幣交易所 Apr 30, 2025 pm 04:30 PM

數字虛擬幣交易平台top10分別是:1. Binance,2. OKX,3. Coinbase,4. Kraken,5. Huobi Global,6. Bitfinex,7. KuCoin,8. Gemini,9. Bitstamp,10. Bittrex,這些平台均提供高安全性和多種交易選項,適用於不同用戶需求。

如何使用MySQL的函數進行數據處理和計算 如何使用MySQL的函數進行數據處理和計算 Apr 29, 2025 pm 04:21 PM

MySQL函數可用於數據處理和計算。 1.基本用法包括字符串處理、日期計算和數學運算。 2.高級用法涉及結合多個函數實現複雜操作。 3.性能優化需避免在WHERE子句中使用函數,並使用GROUPBY和臨時表。

量化交易所排行榜2025 數字貨幣量化交易APP前十名推薦 量化交易所排行榜2025 數字貨幣量化交易APP前十名推薦 Apr 30, 2025 pm 07:24 PM

交易所內置量化工具包括:1. Binance(幣安):提供Binance Futures量化模塊,低手續費,支持AI輔助交易。 2. OKX(歐易):支持多賬戶管理和智能訂單路由,提供機構級風控。獨立量化策略平台有:3. 3Commas:拖拽式策略生成器,適用於多平台對沖套利。 4. Quadency:專業級算法策略庫,支持自定義風險閾值。 5. Pionex:內置16 預設策略,低交易手續費。垂直領域工具包括:6. Cryptohopper:雲端量化平台,支持150 技術指標。 7. Bitsgap:

deepseek官網是如何實現鼠標滾動事件穿透效果的? deepseek官網是如何實現鼠標滾動事件穿透效果的? Apr 30, 2025 pm 03:21 PM

如何實現鼠標滾動事件穿透效果?在我們瀏覽網頁時,經常會遇到一些特別的交互設計。比如在deepseek官網上,�...

MySQL批量插入數據的高效方法 MySQL批量插入數據的高效方法 Apr 29, 2025 pm 04:18 PM

MySQL批量插入数据的高效方法包括:1.使用INSERTINTO...VALUES语法,2.利用LOADDATAINFILE命令,3.使用事务处理,4.调整批量大小,5.禁用索引,6.使用INSERTIGNORE或INSERT...ONDUPLICATEKEYUPDATE,这些方法能显著提升数据库操作效率。

輕鬆協議(Easeprotocol.com)將ISO 20022消息標准直接實現為區塊鏈智能合約 輕鬆協議(Easeprotocol.com)將ISO 20022消息標准直接實現為區塊鏈智能合約 Apr 30, 2025 pm 05:06 PM

這種開創性的開發將使金融機構能夠利用全球認可的ISO20022標準來自動化不同區塊鏈生態系統的銀行業務流程。 Ease協議是一個企業級區塊鏈平台,旨在通過易用的方式促進廣泛採用,今日宣布已成功集成ISO20022消息傳遞標準,直接將其納入區塊鏈智能合約。這一開發將使金融機構能夠使用全球認可的ISO20022標準,輕鬆自動化不同區塊鏈生態系統的銀行業務流程,該標準正在取代Swift消息傳遞系統。這些功能將很快在“EaseTestnet”上進行試用。 EaseProtocolArchitectDou

如何分析MySQL查詢的執行計劃 如何分析MySQL查詢的執行計劃 Apr 29, 2025 pm 04:12 PM

使用EXPLAIN命令可以分析MySQL查詢的執行計劃。 1.EXPLAIN命令顯示查詢的執行計劃,幫助找出性能瓶頸。 2.執行計劃包括id、select_type、table、type、possible_keys、key、key_len、ref、rows和Extra等字段。 3.根據執行計劃,可以通過添加索引、避免全表掃描、優化JOIN操作和使用覆蓋索引來優化查詢。

See all articles