梯度提升演算法決策過程的逐步視覺化
梯度提升演算法是最常用的整合機器學習技術之一,該模型使用弱決策樹序列來建構強學習器。這也是XGBoost和LightGBM模型的理論基礎,所以在這篇文章中,我們將從頭開始建立一個梯度增強模型並將其視覺化。
梯度提升演算法介紹
梯度提升演算法(Gradient Boosting)是一種集成學習演算法,它透過建立多個弱分類器,然後將它們組合成一個強分類器來提高模型的預測準確率。
梯度提升演算法的原理可以分為以下幾個步驟:
- 初始化模型:一般來說,我們可以使用一個簡單的模型(比如說決策樹)作為初始的分類器。
- 計算損失函數的負梯度:計算出每個樣本點在目前模型下的損失函數的負梯度。這相當於是讓新的分類器去擬合目前模型下的誤差。
- 訓練新的分類器:用這些負梯度作為目標變量,訓練一個新的弱分類器。這個弱分類器可以是任意的分類器,比如說決策樹、線性模型等。
- 更新模型:將新的分類器加入原來的模型中,可以用加權平均或其他方法將它們組合起來。
- 重複迭代:重複上述步驟,直到達到預設的迭代次數或達到預設的準確率。
由於梯度提升演算法是一種串列演算法,所以它的訓練速度可能會比較慢,我們以一個實際的例子來介紹:
假設我們有一個特徵集Xi和值Yi,要計算y的最佳估計值
#我們從y的平均值開始
#每一步我們都想讓F_m(x)更接近y|x。
在每一步中,我們都想要F_m(x)一個更好的y給定x的近似值。
首先,我們定義一個損失函數
然後,我們向損失函數相對於學習者Fm下降最快的方向前進:
因為我們不能為每個x計算y,所以不知道這個梯度的確切值,但是對於訓練資料中的每一個x_i,梯度完全等於步驟m的殘差:r_i!
所以我們可以用弱迴歸樹h_m來近似梯度函數g_m,對殘差進行訓練:
然後,我們更新學習器
這就是梯度提升,我們不是使用損失函數相對於當前學習器的真實梯度g_m來更新目前學習器F_{m},而是使用弱回歸樹h_m來更新它。
也就是重複下面的步驟
1、計算殘差:
2、將迴歸樹h_m擬合到訓練樣本及其殘差(x_i, r_i)上
3、用步長alpha更新模型
import numpy as np import sklearn.datasets as ds import pandas as pd import matplotlib.pyplot as plt import matplotlib as mpl from sklearn import tree from itertools import product,islice import seaborn as snsmoonDS = ds.make_moons(200, noise = 0.15, random_state=16) moon = moonDS[0] color = -1*(moonDS[1]*2-1) df =pd.DataFrame(moon, columns = ['x','y']) df['z'] = color df['f0'] =df.y.mean() df['r0'] = df['z'] - df['f0'] df.head(10)
下图可以看到,该数据集是可以明显的区分出分类的边界的,但是因为他是非线性的,所以使用线性算法进行分类时会遇到很大的困难。
那么我们先编写一个简单的梯度增强模型:
def makeiteration(i:int): """Takes the dataframe ith f_i and r_i and approximated r_i from the features, then computes f_i+1 and r_i+1""" clf = tree.DecisionTreeRegressor(max_depth=1) clf.fit(X=df[['x','y']].values, y = df[f'r{i-1}']) df[f'r{i-1}hat'] = clf.predict(df[['x','y']].values) eta = 0.9 df[f'f{i}'] = df[f'f{i-1}'] + eta*df[f'r{i-1}hat'] df[f'r{i}'] = df['z'] - df[f'f{i}'] rmse = (df[f'r{i}']**2).sum() clfs.append(clf) rmses.append(rmse)
上面代码执行3个简单步骤:
将决策树与残差进行拟合:
clf.fit(X=df[['x','y']].values, y = df[f'r{i-1}']) df[f'r{i-1}hat'] = clf.predict(df[['x','y']].values)
然后,我们将这个近似的梯度与之前的学习器相加:
df[f'f{i}'] = df[f'f{i-1}'] + eta*df[f'r{i-1}hat']
最后重新计算残差:
df[f'r{i}'] = df['z'] - df[f'f{i}']
步骤就是这样简单,下面我们来一步一步执行这个过程。
第1次决策
Tree Split for 0 and level 1.563690960407257
第2次决策
Tree Split for 1 and level 0.5143677890300751
第3次决策
Tree Split for 0 and level -0.6523728966712952
第4次决策
Tree Split for 0 and level 0.3370491564273834
第5次决策
Tree Split for 0 and level 0.3370491564273834
第6次决策
Tree Split for 1 and level 0.022058885544538498
第7次决策
Tree Split for 0 and level -0.3030575215816498
第8次决策
Tree Split for 0 and level 0.6119407713413239
第9次决策
可以看到通过9次的计算,基本上已经把上面的分类进行了区分
我们这里的学习器都是非常简单的决策树,只沿着一个特征分裂!但整体模型在每次决策后边的越来越复杂,并且整体误差逐渐减小。
plt.plot(rmses)
这也就是上图中我们看到的能够正确区分出了大部分的分类
如果你感兴趣可以使用下面代码自行实验:
https://www.php.cn/link/bfc89c3ee67d881255f8b097c4ed2d67
以上是梯度提升演算法決策過程的逐步視覺化的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

圖像標註是將標籤或描述性資訊與圖像相關聯的過程,以賦予圖像內容更深層的含義和解釋。這個過程對於機器學習至關重要,它有助於訓練視覺模型以更準確地識別圖像中的各個元素。透過為圖像添加標註,使得電腦能夠理解圖像背後的語義和上下文,從而提高對圖像內容的理解和分析能力。影像標註的應用範圍廣泛,涵蓋了許多領域,如電腦視覺、自然語言處理和圖視覺模型具有廣泛的應用領域,例如,輔助車輛識別道路上的障礙物,幫助疾病的檢測和診斷透過醫學影像識別。本文主要推薦一些較好的開源免費的圖片標註工具。 1.Makesens

在機器學習和資料科學領域,模型的可解釋性一直是研究者和實踐者關注的焦點。隨著深度學習和整合方法等複雜模型的廣泛應用,理解模型的決策過程變得尤為重要。可解釋人工智慧(ExplainableAI|XAI)透過提高模型的透明度,幫助建立對機器學習模型的信任和信心。提高模型的透明度可以透過多種複雜模型的廣泛應用等方法來實現,以及用於解釋模型的決策過程。這些方法包括特徵重要性分析、模型預測區間估計、局部可解釋性演算法等。特徵重要性分析可以透過評估模型對輸入特徵的影響程度來解釋模型的決策過程。模型預測區間估計

本文將介紹如何透過學習曲線來有效辨識機器學習模型中的過度擬合和欠擬合。欠擬合和過擬合1、過擬合如果一個模型對資料進行了過度訓練,以至於它從中學習了噪聲,那麼這個模型就被稱為過擬合。過度擬合模型非常完美地學習了每一個例子,所以它會錯誤地分類一個看不見的/新的例子。對於一個過度擬合的模型,我們會得到一個完美/接近完美的訓練集分數和一個糟糕的驗證集/測試分數。略有修改:"過擬合的原因:用一個複雜的模型來解決一個簡單的問題,從資料中提取雜訊。因為小資料集作為訓練集可能無法代表所有資料的正確表示。"2、欠擬合如

1950年代,人工智慧(AI)誕生。當時研究人員發現機器可以執行類似人類的任務,例如思考。後來,在1960年代,美國國防部資助了人工智慧,並建立了實驗室進行進一步開發。研究人員發現人工智慧在許多領域都有用武之地,例如太空探索和極端環境中的生存。太空探索是對宇宙的研究,宇宙涵蓋了地球以外的整個宇宙空間。太空被歸類為極端環境,因為它的條件與地球不同。要在太空中生存,必須考慮許多因素,並採取預防措施。科學家和研究人員認為,探索太空並了解一切事物的現狀有助於理解宇宙的運作方式,並為潛在的環境危機

通俗來說,機器學習模型是一種數學函數,它能夠將輸入資料映射到預測輸出。更具體地說,機器學習模型是一種透過學習訓練數據,來調整模型參數,以最小化預測輸出與真實標籤之間的誤差的數學函數。在機器學習中存在多種模型,例如邏輯迴歸模型、決策樹模型、支援向量機模型等,每種模型都有其適用的資料類型和問題類型。同時,不同模型之間存在著許多共通性,或者說有一條隱藏的模型演化的路徑。將聯結主義的感知機為例,透過增加感知機的隱藏層數量,我們可以將其轉化為深度神經網路。而對感知機加入核函數的話就可以轉換為SVM。這一

C++中機器學習演算法面臨的常見挑戰包括記憶體管理、多執行緒、效能最佳化和可維護性。解決方案包括使用智慧指標、現代線程庫、SIMD指令和第三方庫,並遵循程式碼風格指南和使用自動化工具。實作案例展示如何利用Eigen函式庫實現線性迴歸演算法,有效地管理記憶體和使用高效能矩陣操作。

機器學習是人工智慧的重要分支,它賦予電腦從數據中學習的能力,並能夠在無需明確編程的情況下改進自身能力。機器學習在各個領域都有廣泛的應用,從影像辨識和自然語言處理到推薦系統和詐欺偵測,它正在改變我們的生活方式。機器學習領域存在著多種不同的方法和理論,其中最具影響力的五種方法被稱為「機器學習五大派」。這五大派分別為符號派、聯結派、進化派、貝葉斯派和類推學派。 1.符號學派符號學(Symbolism),又稱符號主義,強調利用符號進行邏輯推理和表達知識。該學派認為學習是一種逆向演繹的過程,透過現有的

MetaFAIR聯合哈佛優化大規模機器學習時所產生的資料偏差,提供了新的研究架構。據所周知,大語言模型的訓練常常需要數月的時間,使用數百甚至上千個GPU。以LLaMA270B模型為例,其訓練總共需要1,720,320個GPU小時。由於這些工作負載的規模和複雜性,導致訓練大模型存在著獨特的系統性挑戰。最近,許多機構在訓練SOTA生成式AI模型時報告了訓練過程中的不穩定情況,它們通常以損失尖峰的形式出現,例如Google的PaLM模型訓練過程中出現了多達20次的損失尖峰。數值偏差是造成這種訓練不準確性的根因,
