在 NLP 領域,大型語言模型(LLM)已經成功地在各種自然語言任務中充當通用介面。只要我們能夠將輸入和輸出轉換為文本,就能使得基於 LLM 的介面適應一個任務。舉例而言,摘要任務輸入文檔,輸出摘要資訊。所以,我們能夠將輸入文件饋入摘要型語言模型,並產生摘要。
儘管 LLM 在 NLP 任務中取得了成功的應用,但研究人員仍努力將其原生地用於圖像和音訊等多模態資料。作為智慧的基本組成部分,多模態感知是實現通用人工智慧的必要條件,無論是對於知識獲取還是與現實世界打交道。更重要的是,解鎖多模態輸入能夠大幅拓展語言模型在更多高價值領域的應用,例如多模態機器人、文件智慧和機器人技術。
因此,微軟團隊在論文《Language Is Not All You Need: Aligning Perception with Language Models》中介紹了一個##多模態大型語言模型(MLLM)-KOSMOS-1,它可以感知一般模態、遵循指令(即零樣本學習)以及在上下文中學習(即少樣本學習)。研究目標是使感知與 LLM 保持一致,如此一來模型能夠看到(see)和說話(talk)。研究者依照 METALM(參見論文《Language models are general-purpose interfaces》 )的方式從頭開始訓練 KOSMOS-1。
#如下圖1 所示,研究者將一個基於Transformer 的語言模型作為通用接口,並將其與感知模組對接。他們在網頁規模的多模態語料庫上訓練模型,語料庫包含了文字資料、任意交錯的圖像和文字、以及圖像字幕對。此外,研究者也透過傳輸純語言資料來校準跨模態的指令遵循能力。
最終,KOSMOS-1 模型原生支援零樣本和少樣本學習設定下的語言、知覺語言與視覺任務,如下表 1 所示。
#研究者在下圖 2 和圖 3 中展示了一些生成範例。 除了各種自然語言任務,KOSMOS-1 模型能夠原生處理廣泛的感知密集型任務,如視覺對話、視覺解釋、視覺問答、圖像字幕、簡單的數學方程式、OCR 和帶有描述的零樣本影像分類。 他們也根據瑞文推理測驗(Raven's Progressive Matrices, RPM)建立了一個 IQ 測驗基準,用來評估 MLLM 的非語言推理能力。
這些範例表明,多模態感知的原生支援為將LLM 應用於新任務提供了新的機遇。此外與 LLM 相比,MLLM 實現了更好的常識推理性能,表明了跨模態遷移有助於知識獲取。
由於 KOSMOS-1 模型的參數量為 16 億,因此有網友表示有望在自己的電腦上運行這個多模態大模型。
如圖1 所示,KOSMOS-1 是一個多模態語言模型,它既可以感知一般的模態、遵循指令、還能在上下文中學習並產生輸出。具體來說,KOSMOS-1 的主幹是一個基於 Transformer 的因果語言模型。除了文字之外,其他模態也能被嵌入並輸入到該模型中,如下圖中,除了語言上還有視覺、語音等的嵌入。 Transformer 解碼器用作多模態輸入的通用介面。一旦模型訓練完成,KOSMOS-1 在零樣本和少樣本設定中也能對語言任務和多模態任務進行評估。
Transformer 解碼器以統一的方式感知模態,輸入訊息會被 flatten 為具有特殊 token 的序列。例如 表示序列開始、 表示序列結束。特殊 token
#嵌入模組將文字token 和其他輸入模態編碼成向量表示,對於輸入token,該研究使用查找表將其映射到嵌入。對於連續訊號模態(例如,影像和音訊),也可以將輸入表示為離散編碼。
之後,得到的輸入序列嵌入會被饋送到基於 Transformer 的解碼器。然後因果模型以一種自回歸的方式處理序列,從而產生下一個 token。總而言之,MLLM 框架可以靈活地處理各種資料類型,只要將輸入表示為向量即可。
首先是訓練資料集。資料集包括文字語料庫、圖像 - 字幕對、圖像和文字交叉資料集。具體而言,文字語料庫包括The Pile 、Common Crawl (CC);圖像- 字幕對包括English LAION-2B、LAION-400M、COYO-700M 以及Conceptual Captions;圖像和文字交叉多模態資料集來自Common Crawl snapshot 。
資料集有了,然後是訓練設定。 MLLM 元件包含 24 層、隱藏維度是 2048、8192 個 FFN 和 32 個注意力頭、參數量為 1.3B。為了使模型更好的收斂,圖像表示是從具有 1024 個特徵維度的預訓練 CLIP ViT-L/14 模型獲得的。影像在訓練過程中被預處理為 224×224 分辨率,此外,訓練期間除了最後一層,所有的 CLIP 模型參數被凍結。 KOSMOS-1 的參數總數約為 1.6B。
該研究進行了一系列豐富的實驗來評估KOSMOS-1 :語言任務(語言理解、語言生成、 OCR-free 文本分類);跨模態遷移(常識推理);非語言推理( IQ 測試);感知- 語言任務(圖像字幕、視覺問答、網頁問答);視覺任務(零樣本影像分類、帶有描述的零樣本影像分類)。
圖片字幕。 下表給出了不同模型在 COCO 和 Flickr30k 上的零樣本表現。相較於其他模型,KOSMOS-1 均取得了顯著效果,甚至在參數量遠小於 Flamingo 的基礎上,效能也不錯。
下表為少樣本效能比較:
視覺問答。 KOSMOS-1 比Flamingo-3B 和Flamingo-9B 模型具有更高的準確率和穩健性:
下表為少樣本效能比較:
IQ 測驗。瑞文推理測驗是評估非語言推理最常見的測驗之一。圖 4 顯示了一個範例。
表 6 顯示了在 IQ 測試資料集上的評估結果。 KOSMOS-1 能夠在非語言環境中感知抽象概念模式,然後在多個選擇中推理出之後的元素。據了解,這是首次有模型可以執行此類零樣本 Raven IQ 測試。
#網頁問答。 網頁問答旨在從網頁中找到問題的答案。它要求模型既能理解文本的語義,又能理解文本的結構。結果如下:
#多模態思維鏈提示。 受思維鏈提示的啟發,本文對這方面進行了實驗。如圖 5 本文將感知語言任務分解為兩個步驟。在第一階段給定影像,使用提示來引導模型產生符合要求的輸出,以產生最終結果。
從表9 可以看出,多模態思考鏈提示的得分為72.9 分,比標準提示高出5.8 分:
#了解更多實驗內容,請參考原文。
以上是微軟多模態ChatGPT來了? 16億參數搞定看圖答題、智商測驗等任務的詳細內容。更多資訊請關注PHP中文網其他相關文章!