妙啊!這款 Python 資料視覺化工具強的很!
使用Altair ,你可以將更多時間專注於數據及其含義,下面我將詳細介紹:
範例
這是一個在JupyterLab 中使用Altair 快速視覺化和顯示資料集的範例:
import altair as alt # load a simple dataset as a pandas DataFrame from vega_datasets import data cars = data.cars() alt.Chart(cars).mark_point().encode( x='Horsepower', y='Miles_per_Gallon', color='Origin', )
源自Vega-Lite 的Altair 的獨特功能之一是聲明性語法,它不僅具有可視化功能,還具有互動性。透過對上面的範例進行一些修改,我們可以建立一個連結的直方圖,該直方圖根據散點圖的選擇進行過濾。
import altair as alt from vega_datasets import data source = data.cars() brush = alt.selection(type='interval') points = alt.Chart(source).mark_point().encode( x='Horsepower', y='Miles_per_Gallon', color=alt.condition(brush, 'Origin', alt.value('lightgray')) ).add_selection( brush ) bars = alt.Chart(source).mark_bar().encode( y='Origin', color='Origin', x='count(Origin)' ).transform_filter( brush ) points & bars
安裝方法
Altair需要以下相依性:
- pandas
- traitlets
- IPython
如果已複製儲存庫,請從儲存庫的根目錄執行下列指令:
pip install -e .[dev]
如果你不想複製儲存庫,則可以使用下列指令進行安裝:
pip install git+https://github.com/altair-viz/altair
更多內容詳情,可以查看github連結:
https://github.com/altair-viz/altair
三大操作
##接下來,我將詳細介紹Altair如何建立篩選、分組和合併作業的視覺化對象,可以將其用作探索性資料分析過程的一部分。 我們建構兩個資料幀的模擬資料。第一個是餐廳訂單,第二個是餐廳訂單中的商品價格。# import libraries import numpy as np import pandas as pd import altair as alt import random # mock data orders = pd.DataFrame({ "order_id": np.arange(1,101), "item": np.random.randint(1, 50, size=100), "qty": np.random.randint(1, 10, size=100), "tip": (np.random.random(100) * 10).round(2) }) prices = pd.DataFrame({ "item": np.arange(1,51), "price": (np.random.random(50) * 50).round(2) }) order_type = ["lunch", "dinner"] * 50 random.shuffle(order_type) orders["order_type"] = order_type
alt.Chart(orders).mark_circle(size=50).encode( x="qty", y="tip", color="order_type" ).properties( title = "Tip vs Quantity" )
- 將資料傳遞到Chart 對象,資料可以採用Pandas資料框或指向json或csv文件的URL字串的形式。 選擇可視化的類型(例如 mark_circle,mark_line 等)。 encode 編碼函數指定在給定資料幀中要繪製的內容。因此,我們在編碼函數中編寫的任何內容都必須連結到資料幀。 使用properties函數指定圖的某些屬性。
alt.Chart(orders).mark_circle(size=50).encode( x="tip", y="price:Q", color="order_type" ).transform_lookup( lookup="item", from_=alt.LookupData(data=prices, key="item", fields=["price"]) ).properties( title = "Price vs Tip" )
alt.Chart(orders).mark_circle(size=50).encode( x="tip", y="price:Q", color="order_type" ).transform_lookup( lookup="item", from_=alt.LookupData(data=prices, key="item", fields=["price"]) ).transform_filter( alt.FieldGTPredicate(field='price', gt=10) ).properties( title = "Price vs Tip" )
alt.Chart(orders).mark_bar().encode( y="order_type", x="avg_price:Q" ).transform_lookup( lookup="item", from_=alt.LookupData(data=prices, key="item", fields=["price"]) ).transform_filter( alt.FieldLTPredicate(field='price', lt=20) ).transform_aggregate( avg_price = "mean(price)", groupby = ["order_type"] ).properties( height=200, width=300 )
- transform_lookup:從價格資料框中找出價格。
- transform_filter:過濾價格低於20美元的價格。
- transform_aggregate:以訂單類型分組並計算平均值。
以上是妙啊!這款 Python 資料視覺化工具強的很!的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

PHP主要是過程式編程,但也支持面向對象編程(OOP);Python支持多種範式,包括OOP、函數式和過程式編程。 PHP適合web開發,Python適用於多種應用,如數據分析和機器學習。

PHP適合網頁開發和快速原型開發,Python適用於數據科學和機器學習。 1.PHP用於動態網頁開發,語法簡單,適合快速開發。 2.Python語法簡潔,適用於多領域,庫生態系統強大。

在 Sublime Text 中運行 Python 代碼,需先安裝 Python 插件,再創建 .py 文件並編寫代碼,最後按 Ctrl B 運行代碼,輸出會在控制台中顯示。

Python更適合初學者,學習曲線平緩,語法簡潔;JavaScript適合前端開發,學習曲線較陡,語法靈活。 1.Python語法直觀,適用於數據科學和後端開發。 2.JavaScript靈活,廣泛用於前端和服務器端編程。

PHP起源於1994年,由RasmusLerdorf開發,最初用於跟踪網站訪問者,逐漸演變為服務器端腳本語言,廣泛應用於網頁開發。 Python由GuidovanRossum於1980年代末開發,1991年首次發布,強調代碼可讀性和簡潔性,適用於科學計算、數據分析等領域。

Golang在性能和可擴展性方面優於Python。 1)Golang的編譯型特性和高效並發模型使其在高並發場景下表現出色。 2)Python作為解釋型語言,執行速度較慢,但通過工具如Cython可優化性能。

在 Visual Studio Code(VSCode)中編寫代碼簡單易行,只需安裝 VSCode、創建項目、選擇語言、創建文件、編寫代碼、保存並運行即可。 VSCode 的優點包括跨平台、免費開源、強大功能、擴展豐富,以及輕量快速。

在 Notepad 中運行 Python 代碼需要安裝 Python 可執行文件和 NppExec 插件。安裝 Python 並為其添加 PATH 後,在 NppExec 插件中配置命令為“python”、參數為“{CURRENT_DIRECTORY}{FILE_NAME}”,即可在 Notepad 中通過快捷鍵“F6”運行 Python 代碼。
