目錄
01冒泡排序
演算法過程
演算法特點
Python程式碼
02選擇排序
選擇排序原理
03快速排序
04歸併排序
演算法想法
演算法流程
圖解演算法
拆分
合并
Python代码
堆排序
堆的定义
情形2:
堆的存储
堆的初始化
进行堆排序
06插入排序
07希尔排序
基本原理
08计数排序
09桶排序
基本思想
桶的划分过程
排序过程
10基数排序
算法流程
11小结
首頁 後端開發 Python教學 用 Python 實作十大經典排序演算法

用 Python 實作十大經典排序演算法

Apr 16, 2023 am 08:55 AM
python 演算法 程式碼

用 Python 實作十大經典排序演算法

10種經典排序演算法包括冒泡排序、選擇排序、快速排序、歸併排序、堆排序、插入排序、希爾排序、計數排序、桶排序、基數排序等。

當然,還有一些其他的排序演算法,大家可以繼續去研究下。

01冒泡排序

冒泡排序(Bubble Sort)是一種比較簡單的排序演算法,它重複地走訪過要排序的元素,依序比較相鄰兩個元素,如果它們的順序錯誤就把他們調換過來,直到沒有元素再需要交換,排序完成。

用 Python 實作十大經典排序演算法

註:上圖中,數字表示的是資料序列原始的索引號。

演算法過程

  • 比較相鄰的元素,如果前一個比後一個大,就把它們兩個對調位置。
  • 對排序數組中每一對相鄰元素做同樣的工作,直到全部完成,此時最後的元素將會是本輪排序中最大的數。
  • 對剩下的元素繼續重複以上的步驟,直到沒有任何一個元素需要比較。

冒泡排序每次找出一個最大的元素,因此需要遍歷 n-1 次 (n為資料序列的長度)。

演算法特點

什麼時候最快(Best Cases):當輸入的資料已經是正序。

何時最慢(Worst Cases):當輸入的資料是反序時。

Python程式碼

def bubble_sort(lst):
n = len(lst)
for i in range(n):
for j in range(1, n - i):
if lst[j - 1] > lst[j]:
lst[j - 1], lst[j] = lst[j], lst[j - 1]
return lst

登入後複製

02選擇排序

選擇排序原理

選擇排序(Selection Sort)的原理,每一輪從待排序的記錄中選出最小的元素,存放在序列的起始位置,然後再從剩餘的未排序元素中尋找到最小元素,然後放到已排序的序列的末尾。以此類推,直到全部待排序的資料元素的數量為零。得到數值從小到達排序的資料序列。

也可以每一輪找出數值最大的元素,這樣的話,排序完畢後的陣列最終是從大到小排列。

選擇排序每次選出最小(最大)的元素,因此需要遍歷 n-1 次。

用 Python 實作十大經典排序演算法

Python程式碼

def selection_sort(lst):
for i in range(len(lst) - 1):
min_index = i
for j in range(i + 1, len(lst)):
if lst[j] < lst[min_index]:
min_index = j
lst[i], lst[min_index] = lst[min_index], lst[i]
return lst

登入後複製

03快速排序

快速排序(Quick Sort),是在上世紀60年代,由美國人東尼·霍爾提出的一種排序方法。這種排序方式,在當時已經是非常快的一種排序了。因此在命名上,才將之稱為「快速排序」。

演算法過程

  1. 先從資料序列中取出一個數字作為基準數(baseline,習慣取第一個數)。
  2. 分區過程,將比基準數小的數全放到它的左邊,大於或等於它的數全放到它的右邊。
  3. 再對左右區間遞歸(recursive)重複第二步,直到各區間只有一個數。

因為資料序列之間的順序都是固定的。最後將這些子序列一次組合起來,整體的排序就完成了。

如下圖,對於資料序列,先取第一個資料15為基準數,將比15 小的數放在左邊,比15 大(大於或等於)的數放在右邊

用 Python 實作十大經典排序演算法

接下來,對於左邊部分,重複上面的步驟,如下圖,取左邊序列的第一個資料11 為基準數,將比11 小的數放在左邊,比11 大(大於或等於)的數放在右邊。

用 Python 實作十大經典排序演算法

繼續遞歸重複上述過程,直到每個區間只有一個數字。這樣就會完成排序

Python程式碼

def quick_sort(lst):
n = len(lst)
if n <= 1:
return lst
baseline = lst[0]
left = [lst[i] for i in range(1, len(lst)) if lst[i] < baseline]
right = [lst[i] for i in range(1, len(lst)) if lst[i] >= baseline]
return quick_sort(left) + [baseline] + quick_sort(right)

登入後複製

04歸併排序

演算法想法

歸併排序(Merge Sort)是建立在歸併操作上的一種有效的排序演算法。這個演算法是採用分治法的一個非常典型的應用,歸併排序將兩個已經有序的子序列合併成一個有序的序列。

演算法流程

主要兩步驟(拆分,合併)

  • 步驟1:進行序列拆分,一直拆分到只有一個元素;
  • 步驟2:拆分完成後,開始遞迴合併。

想法:假設我們有一個沒有排好序的序列,那麼我們首先使用拆分的方法將這個序列分割成一個個已經排好序的子序列(直到剩下一個元素)。然後再利用歸併方法將一個個有序的子序列合併成排好序的序列。

圖解演算法

拆分

對於資料序列[15,11,13,18,10] ,我們從先從資料序列的中間位置開始拆分,中間位置的設定為

首次拆分如下:

用 Python 實作十大經典排序演算法

第一次拆分后,依次对子序列进行拆分,拆分过程如下:

用 Python 實作十大經典排序演算法

合并

合并过程中,对于左右分区以及其子区间,递归使用合并方法。先从左边最小的子区间开始,对于每个区间,依次将最小的数据放在最左边,然后对右边区间也执行同样的操作。

合并过程的完整图示如下:

用 Python 實作十大經典排序演算法

Python代码

def merge_sort(lst):
def merge(left,right):
i = 0
j = 0
result = []
while i < len(left) and j < len(right):
if left[i] <= right[j]:
result.append(left[i])
i += 1
else:
result.append(right[j])
j += 1
result = result + left[i:] + right[j:]
return result
n = len(lst)
if n <= 1:
return lst
mid = n // 2
left = merge_sort(lst[:mid])
right = merge_sort(lst[mid:])
return merge(left,right)

登入後複製

05堆排序

要理解堆排序(Heap Sort)算法,首先要知道什么是“堆”。

堆的定义

对于 n 个元素的数据序列

,当且仅当满足下列情形之一时,才称之为 堆:

情形1:

用 Python 實作十大經典排序演算法

情形2:

用 Python 實作十大經典排序演算法

若序列

是堆,则堆顶元素必为序列中n个元素的最小值或最大值。

小顶堆如下图所示:

用 Python 實作十大經典排序演算法

小顶堆

大顶堆如下图所示:

用 Python 實作十大經典排序演算法

大顶堆

若在输出堆顶的最小值(或最大值)之后,使得剩余n-1个元素的序列重又建成一个堆,则得到n个元素的次小值(或次大值)。如此反复执行,便能得到一个有序序列,这个过程称之为 堆排序。

堆的存储

一般用数组来表示堆,若根结点存在序号 0 处, i 结点的父结点下标就为 (i-1)/2。i 结点的左右子结点下标分别为 2*i+1和 2*i+2 。

对于上面提到的小顶堆和大顶堆,其数据存储情况如下:

用 Python 實作十大經典排序演算法

小顶堆

用 Python 實作十大經典排序演算法

大顶堆

每幅图的右边为其数据存储结构,左边为其逻辑结构。

堆排序

实现堆排序需要解决两个问题:

  1. 如何由一个无序序列建成一个堆?
  2. 如何在输出堆顶元素之后,调整剩余元素成为一个新的堆?

堆的初始化

第一个问题实际上就是堆的初始化,下面来阐述下如何构造初始堆,假设初始的数据序列如下:

用 Python 實作十大經典排序演算法

咱们首先需要将其以树形结构来展示,如下:

用 Python 實作十大經典排序演算法

初始化堆的时候是对所有的非叶子结点进行筛选。

最后一个非终端元素的下标是 [n/2] 向下取整,所以筛选只需要从第 [n/2] 向下取整个元素开始,从后往前进行调整。

从最后一个非叶子结点开始,每次都是从父结点、左边子节点、右边子节点中进行比较交换,交换可能会引起子结点不满足堆的性质,所以每次交换之后需要重新对被交换的子结点进行调整。

以小顶堆为例,构造初始堆的过程如下:

用 Python 實作十大經典排序演算法

进行堆排序

有了初始堆之后就可以进行排序了。

堆排序是一种选择排序。建立的初始堆为初始的无序区。

排序开始,首先输出堆顶元素(因为它是最值),将堆顶元素和最后一个元素交换,这样,第n个位置(即最后一个位置)作为有序区,前n-1个位置仍是无序区,对无序区进行调整,得到堆之后,再交换堆顶和最后一个元素,这样有序区长度变为2。。。

用 Python 實作十大經典排序演算法

大顶堆

用 Python 實作十大經典排序演算法

交换堆顶元素和最后的元素

用 Python 實作十大經典排序演算法

无序区-1,有序区+1

不断进行此操作,将剩下的元素重新调整为堆,然后输出堆顶元素到有序区。每次交换都导致无序区-1,有序区+1。不断重复此过程直到有序区长度增长为n-1,排序完成。

Python代码

def heap_sort(lst):
def adjust_heap(lst, i, size):
left_index = 2 * i + 1
right_index = 2 * i + 2
largest_index = i
if left_index < size and lst[left_index] > lst[largest_index]:
largest_index = left_index
if right_index < size and lst[right_index] > lst[largest_index]:
largest_index = right_index
if largest_index != i:
lst[largest_index], lst[i] = lst[i], lst[largest_index]
adjust_heap(lst, largest_index, size)
def built_heap(lst, size):
for i in range(len(lst)//2)[::-1]:
adjust_heap(lst, i, size)
size = len(lst)
built_heap(lst, size)
for i in range(len(lst))[::-1]:
lst[0], lst[i] = lst[i], lst[0]
adjust_heap(lst, 0, i)
return lst

登入後複製

06插入排序

插入排序(Insertion Sort)就是每一步都将一个需要排序的数据按其大小插入到已经排序的数据序列中的适当位置,直到全部插入完毕。

插入排序如同打扑克牌一样,每次将后面的牌插到前面已经排好序的牌中。

用 Python 實作十大經典排序演算法

Python代码

def insertion_sort(lst):
for i in range(len(lst) - 1):
cur_num, pre_index = lst[i+1], i
while pre_index >= 0 and cur_num < lst[pre_index]:
lst[pre_index + 1] = lst[pre_index]
pre_index -= 1
lst[pre_index + 1] = cur_num
return lst

登入後複製

07希尔排序

基本原理

希尔排序(Shell Sort)是插入排序的一种更高效率的实现。

希尔排序的核心在于间隔序列的设定。既可以提前设定好间隔序列,也可以动态的定义间隔序列。

这里以动态间隔序列为例来描述。初始间隔(gap值)为数据序列长度除以2取整,后续间隔以 前一个间隔数值除以2取整为循环,直到最后一个间隔值为 1 。

对于下面这个数据序列,初始间隔数值为5

用 Python 實作十大經典排序演算法

先将数据序列按间隔进行子序列分组,第一个子序列的索引为[0,5,10],这里分成了5组。

用 Python 實作十大經典排序演算法

为方便大家区分不同的子序列,对同一个子序列标注相同的颜色,分组情况如下:

用 Python 實作十大經典排序演算法

分组结束后,子序列内部进行插入排序,gap为5的子序列内部排序后如下:

用 Python 實作十大經典排序演算法

用 Python 實作十大經典排序演算法

注:红色箭头标注的地方,是子序列内部排序后的状态

接下来选取第二个间隔值,按照间隔值进行子序列分组,同样地,子序列内部分别进行插入排序;

如果数据序列比较长,则会选取第3个、第4个或者更多个间隔值,重复上述的步骤。

用 Python 實作十大經典排序演算法

gap为2的排序情况前后对照如下:

用 Python 實作十大經典排序演算法

最后一个间隔值为1,这一次相当于简单的插入排序。但是经过前几次排序,序列已经基本有序,因此最后一次排序时间效率就提高了很多。

用 Python 實作十大經典排序演算法

Python代码

def shell_sort(lst):
n = len(lst)
gap = n // 2
while gap > 0:
for i in range(gap, n):
for j in range(i, gap - 1, -gap):
if lst[j] < lst[j - gap]:
lst[j], lst[j - gap] = lst[j - gap], lst[j]
else:
break
gap //= 2
return lst

登入後複製

08计数排序

基本原理

计数排序(Counting Sort)的核心在于将输入的数据值转化为键,存储在额外开辟的数组空间中。计数排序要求输入的数据必须是有确定范围的整数。

算法的步骤如下:

先找出待排序的数组中最大和最小的元素,新开辟一个长度为 最大值-最小值+1 的数组;

用 Python 實作十大經典排序演算法

然后,统计原数组中每个元素出现的次数,存入到新开辟的数组中;

用 Python 實作十大經典排序演算法

接下来,根据每个元素出现的次数,按照新开辟数组中从小到大的秩序,依次填充到原来待排序的数组中,完成排序。

用 Python 實作十大經典排序演算法

Python代码

def counting_sort(lst):
nums_min = min(lst)
bucket = [0] * (max(lst) + 1 - nums_min)
for num in lst:
bucket[num - nums_min] += 1
i = 0
for j in range(len(bucket)):
while bucket[j] > 0:
lst[i] = j + nums_min
bucket[j] -= 1
i += 1
return lst

登入後複製

09桶排序

基本思想

简单来说,桶排序(Bucket Sort)就是把数据分组,放在一个个的桶中,对每个桶里面的数据进行排序,然后将桶进行数据合并,完成桶排序。

该算法分为四步,包括划分桶、数据入桶、桶内排序、数据合并。

桶的划分过程

这里详细介绍下桶的划分过程。

对于一个数值范围在10到 49范围内的数组,我们取桶的大小为10 (defaultBucketSize = 10),则第一个桶的范围为 10到20,第二个桶的数据范围是20到30,依次类推。最后,我们一共需要4个桶来放入数据。

用 Python 實作十大經典排序演算法

用 Python 實作十大經典排序演算法

排序过程

对于下面这个数据序列,初始设定桶的大小为 20 (defaultBucketSize = 20),经计算,一共需要4个桶来放入数据。

用 Python 實作十大經典排序演算法

然后将原始数组按数值大小放入到对应的桶中,完成数据分组。

用 Python 實作十大經典排序演算法

对于桶内的数据序列,这时可以用冒泡排序、选择排序等多种排序算法来对数据进行排序。这些算法,在之前的视频里已有介绍,大家可以去了解下。

这里,我选用 冒泡排序 来对桶内数据进行排序。

用 Python 實作十大經典排序演算法

桶内排序完成后,将数据按桶的顺序进行合并,这样就得到所有数值排好序的数据序列了

用 Python 實作十大經典排序演算法

Python代码

def bucket_sort(lst, defaultBucketSize=4):
maxVal, minVal = max(lst), min(lst)
bucketSize = defaultBucketSize
bucketCount = (maxVal - minVal) // bucketSize + 1 
buckets = [[] for i in range(bucketCount)]
for num in lst:
buckets[(num - minVal) // bucketSize].append(num)
lst.clear()
for bucket in buckets:
bubble_sort(bucket)
lst.extend(bucket)
return lst

登入後複製

10基数排序

基数排序(radix sort)属于“分配式排序”(distribution sort),它是透过键值的部份信息,将要排序的元素分配至某些“桶”中,以达到排序的作用。

基数排序适用于所有元素均为正整数的数组。

基本思想

排序过程分为“分配”和“收集”。

排序过程中,将元素分层为多个关键码进行排序(一般按照数值的个位、十位、百位、…… 进行区分),多关键码排序按照从最主位关键码到最次位关键码或从最次位到最主位关键码的顺序逐次排序。

基数排序的方式可以采用最低位优先LSD(Least sgnificant digital)法或最高位优先MSD(Most sgnificant digital)法,LSD的排序方式由键值的最右边开始,而MSD则相反,由键值的最左边开始。

LSD的基数排序适用于位数小的数列,如果位数多的话,使用MSD的效率会比较好,MSD的方式恰与LSD相反,是由高位数为基底开始进行分配,其他的演算方式则都相同。

算法流程

这里以最低位优先LSD为例。

先根据个位数的数值,在扫描数值时将它们分配至编号0到9的桶中,然后将桶子中的数值串接起来。

用 Python 實作十大經典排序演算法

用 Python 實作十大經典排序演算法

将这些桶子中的数值重新串接起来,成为新的序列,接着再进行一次分配,这次是根据十位数来分配。

用 Python 實作十大經典排序演算法

用 Python 實作十大經典排序演算法

如果排序的对象有三位数以上,则持续进行以上的动作直至最高位数为止。

Python代码

# LSD Radix Sort
def radix_sort(lst):
mod = 10
div = 1
mostBit = len(str(max(lst)))
buckets = [[] for row in range(mod)]
while mostBit:
for num in lst:
buckets[num // div % mod].append(num)
i = 0
for bucket in buckets: 
while bucket:
lst[i] = bucket.pop(0)
i += 1
div *= 10
mostBit -= 1
return lst

登入後複製

11小结

以上就是用 Python 来实现10种经典排序算法的相关内容。

对于这些排序算法的实现,代码其实并不是最主要的,重要的是需要去理解各种算法的基本思想、基本原理以及其内部的实现过程。

对于每种算法,用其他编程语言同样是可以去实现的。

并且,对于同一种算法,即使只用 Python 语言,也有多种不同的代码方式可以来实现,但其基本原理是一致的。

以上是用 Python 實作十大經典排序演算法的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

PHP和Python:解釋了不同的範例 PHP和Python:解釋了不同的範例 Apr 18, 2025 am 12:26 AM

PHP主要是過程式編程,但也支持面向對象編程(OOP);Python支持多種範式,包括OOP、函數式和過程式編程。 PHP適合web開發,Python適用於多種應用,如數據分析和機器學習。

在PHP和Python之間進行選擇:指南 在PHP和Python之間進行選擇:指南 Apr 18, 2025 am 12:24 AM

PHP適合網頁開發和快速原型開發,Python適用於數據科學和機器學習。 1.PHP用於動態網頁開發,語法簡單,適合快速開發。 2.Python語法簡潔,適用於多領域,庫生態系統強大。

PHP和Python:深入了解他們的歷史 PHP和Python:深入了解他們的歷史 Apr 18, 2025 am 12:25 AM

PHP起源於1994年,由RasmusLerdorf開發,最初用於跟踪網站訪問者,逐漸演變為服務器端腳本語言,廣泛應用於網頁開發。 Python由GuidovanRossum於1980年代末開發,1991年首次發布,強調代碼可讀性和簡潔性,適用於科學計算、數據分析等領域。

Python vs. JavaScript:學習曲線和易用性 Python vs. JavaScript:學習曲線和易用性 Apr 16, 2025 am 12:12 AM

Python更適合初學者,學習曲線平緩,語法簡潔;JavaScript適合前端開發,學習曲線較陡,語法靈活。 1.Python語法直觀,適用於數據科學和後端開發。 2.JavaScript靈活,廣泛用於前端和服務器端編程。

sublime怎麼運行代碼python sublime怎麼運行代碼python Apr 16, 2025 am 08:48 AM

在 Sublime Text 中運行 Python 代碼,需先安裝 Python 插件,再創建 .py 文件並編寫代碼,最後按 Ctrl B 運行代碼,輸出會在控制台中顯示。

vs code 可以在 Windows 8 中運行嗎 vs code 可以在 Windows 8 中運行嗎 Apr 15, 2025 pm 07:24 PM

VS Code可以在Windows 8上運行,但體驗可能不佳。首先確保系統已更新到最新補丁,然後下載與系統架構匹配的VS Code安裝包,按照提示安裝。安裝後,注意某些擴展程序可能與Windows 8不兼容,需要尋找替代擴展或在虛擬機中使用更新的Windows系統。安裝必要的擴展,檢查是否正常工作。儘管VS Code在Windows 8上可行,但建議升級到更新的Windows系統以獲得更好的開發體驗和安全保障。

vscode在哪寫代碼 vscode在哪寫代碼 Apr 15, 2025 pm 09:54 PM

在 Visual Studio Code(VSCode)中編寫代碼簡單易行,只需安裝 VSCode、創建項目、選擇語言、創建文件、編寫代碼、保存並運行即可。 VSCode 的優點包括跨平台、免費開源、強大功能、擴展豐富,以及輕量快速。

visual studio code 可以用於 python 嗎 visual studio code 可以用於 python 嗎 Apr 15, 2025 pm 08:18 PM

VS Code 可用於編寫 Python,並提供許多功能,使其成為開發 Python 應用程序的理想工具。它允許用戶:安裝 Python 擴展,以獲得代碼補全、語法高亮和調試等功能。使用調試器逐步跟踪代碼,查找和修復錯誤。集成 Git,進行版本控制。使用代碼格式化工具,保持代碼一致性。使用 Linting 工具,提前發現潛在問題。

See all articles