淺析Go語言的切片如何擴容
Go 語言切片是如何擴容的?以下這篇文章為大家介紹一下Go 語言中切片的擴容機制,希望對大家有幫助!
在 Go 語言中,有一個很常用的資料結構,那就是切片(Slice)。
切片是一個擁有相同類型元素的可變長度的序列,它是基於陣列類型所做的一層封裝。它非常靈活,支援自動擴容。
切片是一種引用類型,它有三個屬性:指標,長度和容量。
底層原始碼定義如下:
type slice struct { array unsafe.Pointer len int cap int }
- #指標: 指向 slice 可以存取到的第一個元素。
- 長度: slice 中元素個數。
- 容量: slice 起始元素到底層陣列最後一個元素間的元素個數。
例如使用make([]byte, 5)
建立一個切片,它看起來是這樣的:
##宣告和初始化
切片的使用還是比較簡單的,這裡舉個例子,直接看程式碼吧。func main() { var nums []int // 声明切片 fmt.Println(len(nums), cap(nums)) // 0 0 nums = append(nums, 1) // 初始化 fmt.Println(len(nums), cap(nums)) // 1 1 nums1 := []int{1,2,3,4} // 声明并初始化 fmt.Println(len(nums1), cap(nums1)) // 4 4 nums2 := make([]int,3,5) // 使用make()函数构造切片 fmt.Println(len(nums2), cap(nums2)) // 3 5 }
擴容時機
當切片的長度超過其容量時,切片會自動擴容。這通常發生在使用append 函數向切片中新增元素時。
擴充功能會指派新陣列並複製元素,因此可能會影響效能。如果你知道要添加多少元素,可以使用 make 函數預先分配足夠大的切片來避免頻繁擴容。
append 函數,簽章如下:
func Append(slice []int, items ...int) []int
append 函數參數長度可變,可以追加多個值,還可以直接追加一個切片。使用起來比較簡單,分別看兩個例子:
追加多個值:
package main import "fmt" func main() { s := []int{1, 2, 3} fmt.Println("初始切片:", s) s = append(s, 4, 5, 6) fmt.Println("追加多个值后的切片:", s) }
初始切片: [1 2 3] 追加多个值后的切片: [1 2 3 4 5 6]
追加一個切片:
package main import "fmt" func main() { s1 := []int{1, 2, 3} fmt.Println("初始切片:", s1) s2 := []int{4, 5, 6} s1 = append(s1, s2...) fmt.Println("追加另一个切片后的切片:", s1) }
初始切片: [1 2 3] 追加另一个切片后的切片: [1 2 3 4 5 6]
發生擴容的範例:
package main import "fmt" func main() { s := make([]int, 0, 3) // 创建一个长度为0,容量为3的切片 fmt.Printf("初始状态: len=%d cap=%d %v\n", len(s), cap(s), s) for i := 1; i <= 5; i++ { s = append(s, i) // 向切片中添加元素 fmt.Printf("添加元素%d: len=%d cap=%d %v\n", i, len(s), cap(s), s) } }
初始状态: len=0 cap=3 [] 添加元素1: len=1 cap=3 [1] 添加元素2: len=2 cap=3 [1 2] 添加元素3: len=3 cap=3 [1 2 3] 添加元素4: len=4 cap=6 [1 2 3 4] 添加元素5: len=5 cap=6 [1 2 3 4 5]
0,容量為
3 的切片。然後,我們使用
append 函數在切片中新增
5 個元素。
4 個元素時,切片的長度超過了其容量。此時,切片會自動擴容。新的容量是原始容量的兩倍,即
6。
原始碼分析
在 Go 語言的原始碼中,切片擴容通常是在進行切片的append 操作時觸發的。在進行
append 操作時,如果切片容量不足以容納新的元素,就需要對切片進行擴容,此時就會呼叫
growslice 函數進行擴容。
growslice 函數定義在 Go 語言的 runtime 套件中,它的呼叫是在編譯後的程式碼中實現的。具體來說,當執行
append 操作時,編譯器會將其轉換為類似下面的程式碼:
slice = append(slice, elem)
growslice 函數進行擴容。所以
growslice 函數的呼叫是
由編譯器在產生的機器碼中實現的,而不是在原始碼中明確調用的。
package main import "fmt" func main() { s := make([]int, 0) oldCap := cap(s) for i := 0; i < 2048; i++ { s = append(s, i) newCap := cap(s) if newCap != oldCap { fmt.Printf("[%d -> %4d] cap = %-4d | after append %-4d cap = %-4d\n", 0, i-1, oldCap, i, newCap) oldCap = newCap } } }
append 新元素。
1.17 版本):
[0 -> -1] cap = 0 | after append 0 cap = 1 [0 -> 0] cap = 1 | after append 1 cap = 2 [0 -> 1] cap = 2 | after append 2 cap = 4 [0 -> 3] cap = 4 | after append 4 cap = 8 [0 -> 7] cap = 8 | after append 8 cap = 16 [0 -> 15] cap = 16 | after append 16 cap = 32 [0 -> 31] cap = 32 | after append 32 cap = 64 [0 -> 63] cap = 64 | after append 64 cap = 128 [0 -> 127] cap = 128 | after append 128 cap = 256 [0 -> 255] cap = 256 | after append 256 cap = 512 [0 -> 511] cap = 512 | after append 512 cap = 1024 [0 -> 1023] cap = 1024 | after append 1024 cap = 1280 [0 -> 1279] cap = 1280 | after append 1280 cap = 1696 [0 -> 1695] cap = 1696 | after append 1696 cap = 2304
1.18 版本):
[0 -> -1] cap = 0 | after append 0 cap = 1 [0 -> 0] cap = 1 | after append 1 cap = 2 [0 -> 1] cap = 2 | after append 2 cap = 4 [0 -> 3] cap = 4 | after append 4 cap = 8 [0 -> 7] cap = 8 | after append 8 cap = 16 [0 -> 15] cap = 16 | after append 16 cap = 32 [0 -> 31] cap = 32 | after append 32 cap = 64 [0 -> 63] cap = 64 | after append 64 cap = 128 [0 -> 127] cap = 128 | after append 128 cap = 256 [0 -> 255] cap = 256 | after append 256 cap = 512 [0 -> 511] cap = 512 | after append 512 cap = 848 [0 -> 847] cap = 848 | after append 848 cap = 1280 [0 -> 1279] cap = 1280 | after append 1280 cap = 1792 [0 -> 1791] cap = 1792 | after append 1792 cap = 2560
go1.17
扩容调用的是 growslice
函数,我复制了其中计算新容量部分的代码。
// src/runtime/slice.go func growslice(et *_type, old slice, cap int) slice { // ... newcap := old.cap doublecap := newcap + newcap if cap > doublecap { newcap = cap } else { if old.cap < 1024 { newcap = doublecap } else { // Check 0 < newcap to detect overflow // and prevent an infinite loop. for 0 < newcap && newcap < cap { newcap += newcap / 4 } // Set newcap to the requested cap when // the newcap calculation overflowed. if newcap <= 0 { newcap = cap } } } // ... return slice{p, old.len, newcap} }
在分配内存空间之前需要先确定新的切片容量,运行时根据切片的当前容量选择不同的策略进行扩容:
- 如果期望容量大于当前容量的两倍就会使用期望容量;
- 如果当前切片的长度小于 1024 就会将容量翻倍;
- 如果当前切片的长度大于等于 1024 就会每次增加 25% 的容量,直到新容量大于期望容量;
go1.18
// src/runtime/slice.go func growslice(et *_type, old slice, cap int) slice { // ... newcap := old.cap doublecap := newcap + newcap if cap > doublecap { newcap = cap } else { const threshold = 256 if old.cap < threshold { newcap = doublecap } else { // Check 0 < newcap to detect overflow // and prevent an infinite loop. for 0 < newcap && newcap < cap { // Transition from growing 2x for small slices // to growing 1.25x for large slices. This formula // gives a smooth-ish transition between the two. newcap += (newcap + 3*threshold) / 4 } // Set newcap to the requested cap when // the newcap calculation overflowed. if newcap <= 0 { newcap = cap } } } // ... return slice{p, old.len, newcap} }
和之前版本的区别,主要在扩容阈值,以及这行代码:newcap += (newcap + 3*threshold) / 4
。
在分配内存空间之前需要先确定新的切片容量,运行时根据切片的当前容量选择不同的策略进行扩容:
- 如果期望容量大于当前容量的两倍就会使用期望容量;
- 如果当前切片的长度小于阈值(默认 256)就会将容量翻倍;
- 如果当前切片的长度大于等于阈值(默认 256),就会每次增加 25% 的容量,基准是
newcap + 3*threshold
,直到新容量大于期望容量;
内存对齐
分析完两个版本的扩容策略之后,再看前面的那段测试代码,就会发现扩容之后的容量并不是严格按照这个策略的。
那是为什么呢?
实际上,growslice
的后半部分还有更进一步的优化(内存对齐等),靠的是 roundupsize
函数,在计算完 newcap
值之后,还会有一个步骤计算最终的容量:
capmem = roundupsize(uintptr(newcap) * ptrSize) newcap = int(capmem / ptrSize)
这个函数的实现就不在这里深入了,先挖一个坑,以后再来补上。
总结
切片扩容通常是在进行切片的 append
操作时触发的。在进行 append
操作时,如果切片容量不足以容纳新的元素,就需要对切片进行扩容,此时就会调用 growslice
函数进行扩容。
切片扩容分两个阶段,分为 go1.18 之前和之后:
一、go1.18 之前:
- 如果期望容量大于当前容量的两倍就会使用期望容量;
- 如果当前切片的长度小于 1024 就会将容量翻倍;
- 如果当前切片的长度大于 1024 就会每次增加 25% 的容量,直到新容量大于期望容量;
二、go1.18 之后:
- 如果期望容量大于当前容量的两倍就会使用期望容量;
- 如果当前切片的长度小于阈值(默认 256)就会将容量翻倍;
- 如果当前切片的长度大于等于阈值(默认 256),就会每次增加 25% 的容量,基准是
newcap + 3*threshold
,直到新容量大于期望容量;
以上就是本文的全部内容,如果觉得还不错的话欢迎点赞,转发和关注,感谢支持。
推荐学习:Golang教程
以上是淺析Go語言的切片如何擴容的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

熱門話題

在Go中,可以使用正規表示式比對時間戳記:編譯正規表示式字串,例如用於匹配ISO8601時間戳記的表達式:^\d{4}-\d{2}-\d{2}T \d{2}:\d{2}:\d{2}(\.\d+)?(Z|[+-][0-9]{2}:[0-9]{2})$ 。使用regexp.MatchString函數檢查字串是否與正規表示式相符。

在Go中,可以使用gorilla/websocket包發送WebSocket訊息。具體步驟:建立WebSocket連線。傳送文字訊息:呼叫WriteMessage(websocket.TextMessage,[]byte("訊息"))。發送二進位訊息:呼叫WriteMessage(websocket.BinaryMessage,[]byte{1,2,3})。

Go和Go語言是不同的實體,具有不同的特性。 Go(又稱Golang)以其並發性、編譯速度快、記憶體管理和跨平台優點而聞名。 Go語言的缺點包括生態系統不如其他語言豐富、文法更嚴格、缺乏動態類型。

記憶體洩漏會導致Go程式記憶體不斷增加,可通過:關閉不再使用的資源,如檔案、網路連線和資料庫連線。使用弱引用防止記憶體洩漏,當物件不再被強引用時將其作為垃圾回收目標。利用go協程,協程棧記憶體會在退出時自動釋放,避免記憶體洩漏。

Go框架是一組擴充Go內建程式庫的元件,提供預製功能(例如網路開發和資料庫操作)。受歡迎的Go框架包括Gin(Web開發)、GORM(資料庫操作)和RESTful(API管理)。中間件是HTTP請求處理鏈中的攔截器模式,用於在不修改處理程序的情況下新增身份驗證或請求日誌記錄等功能。 Session管理透過儲存使用者資料來保持會話狀態,可以使用gorilla/sessions管理session。

對並發函數進行單元測試至關重要,因為這有助於確保其在並發環境中的正確行為。測試並發函數時必須考慮互斥、同步和隔離等基本原理。可以透過模擬、測試競爭條件和驗證結果等方法對並發函數進行單元測試。

在Golang中,錯誤包裝器允許你在原始錯誤上追加上下文訊息,從而創建新錯誤。這可用於統一不同程式庫或元件拋出的錯誤類型,簡化偵錯和錯誤處理。步驟如下:使用errors.Wrap函數將原有錯誤包裝成新錯誤。新錯誤包含原始錯誤的上下文資訊。使用fmt.Printf輸出包裝後的錯誤,提供更多上下文和可操作性。在處理不同類型的錯誤時,使用errors.Wrap函數統一錯誤類型。

在Go語言中建立優先權Goroutine有兩步驟:註冊自訂Goroutine建立函數(步驟1)並指定優先權值(步驟2)。這樣,您可以建立不同優先順序的Goroutine,優化資源分配並提高執行效率。
