目錄
圖像到圖像的翻譯
用於圖像翻譯的5種最有前途的AI模型
Pix2Pix
Vision Transformers (ViT)
TransGAN
首頁 科技週邊 人工智慧 五個有前途的AI模型用於圖像翻譯

五個有前途的AI模型用於圖像翻譯

Apr 23, 2023 am 10:55 AM
人工智慧 神經網路 平面設計

圖像到圖像的翻譯

根據Solanki、Nayyar和Naved在論文中提供的定義,圖像到圖像的翻譯是將圖像從一個域轉換到另一個域的過程,其目標是學習輸入影像和輸出影像之間的映射。

換句話說,我們希望模型能夠透過學習映射函數f將一張圖像a轉換成另一張圖像b。

用于图像翻译的五 种最有前途的 AI 模型

有人可能會想,這些模型有什麼用,它們在人工智慧世界有什麼關聯。應用程式往往有很多,這不僅限於藝術或平面設計領域。例如,能夠拍攝影像並將其轉換為另一個影像來創建合成資料(如分割影像),這對訓練自動駕駛汽車模型非常有用。另一個經過測試的應用程式是地圖設計,其中模型能夠執行兩種轉換(衛星視圖到地圖,反之亦然)。影像翻轉換型也可以應用於建築,模型可以就如何完成未完成的專案提出建議。

影像轉換最引人注目的應用之一是將簡單的繪圖轉換為美麗的風景或繪畫。

用於圖像翻譯的5種最有前途的AI模型

在過去幾年中,已經開發出幾種方法,透過利用生成模型來解決圖像到圖像轉換的問題。最常用的方法是基於以下體系結構:

  • 產生對抗網路(GAN)
  • 變分自編碼器(VAE)
  • 擴散模型(DVAE)
  • Transformers

Pix2Pix

Pix2Pix是一個基於條件GAN的模型。這意味著它的架構是由Generator網路(G)和Discriminator (D)組成的。這兩個網路都是在對抗性遊戲中訓練的,其中G的目標是產生與資料集相似的新影像,而D必須決定影像是生成的(假)還是來自資料集(真)。

Pix2Pix和其他GAN模型之間的主要區別是:(1)第一個Generator將圖像作為輸入來啟動生成過程,而普通GAN使用隨機噪聲;(2)Pix2Pix是一個完全監督模型,這意味著資料集由來自兩個域的成對影像組成。

論文中所描述的體系結構是由一個用於生成器的U-Net和用於Discriminator的Markovian Discriminator或Patch Discriminator定義的:

    ##U-Net:由兩個模組組成(下採樣和上採樣)。使用卷積層將輸入影像簡化為一組較小的影像(稱為特徵映射),然後透過轉置卷積進行上取樣,直到達到原始的輸入維度。下採樣和上採樣之間存在skip connections。
  • Patch Discriminator:卷積網絡,它的輸出是一個矩陣,其中每個元素都是圖像的一個部分(patch)的評估結果。它包括生成的圖像和真實圖像之間的L1距離,以確保生成器學會在給定輸入圖像的情況下映射正確的函數。也稱為馬可夫,因為它依賴來自不同patch的像素是獨立的假設。

用于图像翻译的五 种最有前途的 AI 模型

Pix2Pix結果

無監督圖像到圖像翻譯(UNIT)

在Pix2Pix中,訓練過程是完全監督的(即我們需要成對的圖像輸入)。 UNIT方法的目的是學習將圖像A映射到圖像B的函數,而不需要訓練兩個成對的圖像。

模型從假設兩個域(A和B)共享一個共同的潛在空間(Z)開始。直觀地說,我們可以將這個潛在空間視為影像域A和B之間的中間階段。因此,使用從繪畫到圖像的例子,我們可以使用相同的潛在空間向後生成繪畫圖像或向前看到令人驚嘆的圖像(見圖X)。

圖中:(a)共享潛空間。 (b)UNIT架構:X1是一幅圖畫,X2是一幅美麗的風景;E1, E2是編碼器,從兩個域(繪圖和風景)提取圖像,並將它們映射到共享潛在空間Z;G1 , G2產生器,D1, D2判別器。虛線表示網路之間的共用層。

UNIT模型是在一對VAE-GAN架構下開發的(見上圖),其中編碼器的最後一層(E1, E2)和生成器的第一層(G1, G2)是共享的。

用于图像翻译的五 种最有前途的 AI 模型

UNIT結果

Palette

Palette是加拿大Google研究小組開發的條件擴散模型。此模型經過訓練,可執行與影像轉換相關的4項不同任務,從而獲得高品質的結果:

(i)著色:為灰階影像添加顏色

(ii) Inpainting:用逼真的內容填滿使用者指定的影像區域

(iii)Uncropping:放大影像影格

(iv)JPEG復原:恢復損壞的JPEG影像

在論文中,作者探討了多任務通用模型和多個專門模型之間的區別,兩者都經過一百萬次迭代訓練。此模型的體系結構是基於Dhariwal和Nichol 2021的類別條件U-Net模型,使用1024個批次大小的影像進行1M的訓練步驟。將噪音計畫作為超參數進行預處理和調整,使用不同的計畫進行訓練和預測。

用于图像翻译的五 种最有前途的 AI 模型

Palette結果

Vision Transformers (ViT)

請注意,儘管以下兩個模型並不是專門為圖像轉換設計的,但它們在將諸如transformers等功能強大的模型引入計算機視覺領域方面邁出了明顯的一步。

Vision Transformers(ViT)是Transformers架構的修改(Vaswani等人,2017年),是為影像分類而開發的。此模型將影像作為輸入,並輸出屬於每個已定義類別的機率。

主要問題在於Transformers被設計成以一維序列作為輸入,而不是二維矩陣。為了進行排序,作者建議將影像分割為小塊,將影像視為序列(或NLP中的句子),小塊視為標記(或單字)。

簡單總結一下,我們可以將整個過程分為3個階段:

1)嵌入:將小塊拆分並flatten→應用線性變換→添加類標記(此標記將作為分類時考慮的圖像摘要)→位置嵌入

2)Transformer-Encoder區塊:將嵌入的patches放入一系列變transformer encoder區塊中。注意力機制會學習專注於圖像的哪些部分。

3)分類MLP頭:將類別令牌通過MLP頭,該MLP頭輸出影像屬於每個類別的最終機率。

使用ViT的優點:排列不變。與CNN相比,Transformer不受影像中的平移(元素位置的變化)的影響。

缺點:需要大量標記資料進行訓練(至少14M的圖像)

TransGAN

TransGAN是一個基於transform的GAN模型,設計用於圖像生成,不使用任何卷積層。相反,生成器和鑑別器是由一系列由上採樣和下採樣區塊連接的Transformer組成的。

生成器的正向過程取一個一維數組的隨機雜訊樣本,並將其通過MLP。直觀地說,我們可以把數組想像成一個句子,像素的值想像成單字(請注意,一個由64個元素組成的數組可以重塑為1個通道的8✕8的圖像)接下來,作者應用了一系列Transformer塊,每個塊後面都有一個上採樣層,使數組(圖像)的大小增加一倍。

TransGAN的一個關鍵特徵是Grid-self - attention。當達到高維度影像(即非常長的陣列32✕32 = 1024)時,應用transformer可能導致自註意力機制的爆炸性成本,因為您需要將1024數組的每個像素與所有255個可能的像素進行比較(RGB維度)。因此,網格自註意力不是計算給定標記和所有其他標記之間的對應關係,而是將全維度特徵映射劃分為幾個不重疊的網格,並且在每個局部網格中計算標記交互。

判別器體系結構與前面引用的ViT非常相似。

用于图像翻译的五 种最有前途的 AI 模型

用于图像翻译的五 种最有前途的 AI 模型

#不同資料集上的TransGAN結果


以上是五個有前途的AI模型用於圖像翻譯的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

AI Hentai Generator

AI Hentai Generator

免費產生 AI 無盡。

熱門文章

R.E.P.O.能量晶體解釋及其做什麼(黃色晶體)
1 個月前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳圖形設置
1 個月前 By 尊渡假赌尊渡假赌尊渡假赌
威爾R.E.P.O.有交叉遊戲嗎?
1 個月前 By 尊渡假赌尊渡假赌尊渡假赌

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

位元組跳動剪映推出 SVIP 超級會員:連續包年 499 元,提供多種 AI 功能 位元組跳動剪映推出 SVIP 超級會員:連續包年 499 元,提供多種 AI 功能 Jun 28, 2024 am 03:51 AM

本站6月27日訊息,剪映是由位元組跳動旗下臉萌科技開發的一款影片剪輯軟體,依託於抖音平台且基本面向該平台用戶製作短影片內容,並相容於iOS、安卓、Windows 、MacOS等作業系統。剪映官方宣布會員體系升級,推出全新SVIP,包含多種AI黑科技,例如智慧翻譯、智慧劃重點、智慧包裝、數位人合成等。價格方面,剪映SVIP月費79元,年費599元(本站註:折合每月49.9元),連續包月則為59元每月,連續包年為499元每年(折合每月41.6元) 。此外,剪映官方也表示,為提升用戶體驗,向已訂閱了原版VIP

使用Rag和Sem-Rag提供上下文增強AI編碼助手 使用Rag和Sem-Rag提供上下文增強AI編碼助手 Jun 10, 2024 am 11:08 AM

透過將檢索增強生成和語意記憶納入AI編碼助手,提升開發人員的生產力、效率和準確性。譯自EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG,作者JanakiramMSV。雖然基本AI程式設計助理自然有幫助,但由於依賴對軟體語言和編寫軟體最常見模式的整體理解,因此常常無法提供最相關和正確的程式碼建議。這些編碼助手產生的代碼適合解決他們負責解決的問題,但通常不符合各個團隊的編碼標準、慣例和風格。這通常會導致需要修改或完善其建議,以便將程式碼接受到應

微調真的能讓LLM學到新東西嗎:引入新知識可能讓模型產生更多的幻覺 微調真的能讓LLM學到新東西嗎:引入新知識可能讓模型產生更多的幻覺 Jun 11, 2024 pm 03:57 PM

大型語言模型(LLM)是在龐大的文字資料庫上訓練的,在那裡它們獲得了大量的實際知識。這些知識嵌入到它們的參數中,然後可以在需要時使用。這些模型的知識在訓練結束時被「具體化」。在預訓練結束時,模型實際上停止學習。對模型進行對齊或進行指令調優,讓模型學習如何充分利用這些知識,以及如何更自然地回應使用者的問題。但是有時模型知識是不夠的,儘管模型可以透過RAG存取外部內容,但透過微調使用模型適應新的領域被認為是有益的。這種微調是使用人工標註者或其他llm創建的輸入進行的,模型會遇到額外的實際知識並將其整合

七個很酷的GenAI & LLM技術性面試問題 七個很酷的GenAI & LLM技術性面試問題 Jun 07, 2024 am 10:06 AM

想了解更多AIGC的內容,請造訪:51CTOAI.x社群https://www.51cto.com/aigc/譯者|晶顏審校|重樓不同於網路上隨處可見的傳統問題庫,這些問題需要跳脫常規思維。大語言模型(LLM)在數據科學、生成式人工智慧(GenAI)和人工智慧領域越來越重要。這些複雜的演算法提升了人類的技能,並在許多產業中推動了效率和創新性的提升,成為企業保持競爭力的關鍵。 LLM的應用範圍非常廣泛,它可以用於自然語言處理、文字生成、語音辨識和推薦系統等領域。透過學習大量的數據,LLM能夠產生文本

你所不知道的機器學習五大學派 你所不知道的機器學習五大學派 Jun 05, 2024 pm 08:51 PM

機器學習是人工智慧的重要分支,它賦予電腦從數據中學習的能力,並能夠在無需明確編程的情況下改進自身能力。機器學習在各個領域都有廣泛的應用,從影像辨識和自然語言處理到推薦系統和詐欺偵測,它正在改變我們的生活方式。機器學習領域存在著多種不同的方法和理論,其中最具影響力的五種方法被稱為「機器學習五大派」。這五大派分別為符號派、聯結派、進化派、貝葉斯派和類推學派。 1.符號學派符號學(Symbolism),又稱符號主義,強調利用符號進行邏輯推理和表達知識。該學派認為學習是一種逆向演繹的過程,透過現有的

為大模型提供全新科學複雜問答基準與評估體系,UNSW、阿貢、芝加哥大學等多家機構共同推出SciQAG框架 為大模型提供全新科學複雜問答基準與評估體系,UNSW、阿貢、芝加哥大學等多家機構共同推出SciQAG框架 Jul 25, 2024 am 06:42 AM

編輯|ScienceAI問答(QA)資料集在推動自然語言處理(NLP)研究中發揮著至關重要的作用。高品質QA資料集不僅可以用於微調模型,也可以有效評估大語言模型(LLM)的能力,尤其是針對科學知識的理解和推理能力。儘管目前已有許多科學QA數據集,涵蓋了醫學、化學、生物等領域,但這些數據集仍有一些不足之處。其一,資料形式較為單一,大多數為多項選擇題(multiple-choicequestions),它們易於進行評估,但限制了模型的答案選擇範圍,無法充分測試模型的科學問題解答能力。相比之下,開放式問答

SOTA性能,廈大多模態蛋白質-配體親和力預測AI方法,首次結合分子表面訊息 SOTA性能,廈大多模態蛋白質-配體親和力預測AI方法,首次結合分子表面訊息 Jul 17, 2024 pm 06:37 PM

編輯|KX在藥物研發領域,準確有效地預測蛋白質與配體的結合親和力對於藥物篩選和優化至關重要。然而,目前的研究並沒有考慮到分子表面訊息在蛋白質-配體相互作用中的重要作用。基於此,來自廈門大學的研究人員提出了一種新穎的多模態特徵提取(MFE)框架,該框架首次結合了蛋白質表面、3D結構和序列的信息,並使用交叉注意機制進行不同模態之間的特徵對齊。實驗結果表明,該方法在預測蛋白質-配體結合親和力方面取得了最先進的性能。此外,消融研究證明了該框架內蛋白質表面資訊和多模態特徵對齊的有效性和必要性。相關研究以「S

SK 海力士 8 月 6 日將展示 AI 相關新品:12 層 HBM3E、321-high NAND 等 SK 海力士 8 月 6 日將展示 AI 相關新品:12 層 HBM3E、321-high NAND 等 Aug 01, 2024 pm 09:40 PM

本站8月1日消息,SK海力士今天(8月1日)發布博文,宣布將出席8月6日至8日,在美國加州聖克拉拉舉行的全球半導體記憶體峰會FMS2024,展示諸多新一代產品。未來記憶體和儲存高峰會(FutureMemoryandStorage)簡介前身是主要面向NAND供應商的快閃記憶體高峰會(FlashMemorySummit),在人工智慧技術日益受到關注的背景下,今年重新命名為未來記憶體和儲存高峰會(FutureMemoryandStorage),以邀請DRAM和儲存供應商等更多參與者。新產品SK海力士去年在

See all articles