目錄
主成分分析(PCA)
奇異值分解(SVD)
訓練迴歸模型
原始資料:
PCA
回归模型分析
训练分类模型
分类模型分析
总结
首頁 科技週邊 人工智慧 常見降維技術比較:保持資訊完整性下降低資料維度的可行性分析

常見降維技術比較:保持資訊完整性下降低資料維度的可行性分析

Apr 23, 2023 pm 06:46 PM
機器學習 降維技術

本文將比較各種降維技術在機器學習任務中對表格資料的有效性。我們將降維方法應用於資料集,並透過迴歸和分類分析評估其有效性。我們將降維方法應用於從與不同領域相關的 UCI 中取得的各種資料集。總共選擇了 15 個資料集,其中 7 個將用於迴歸,8 個用於分類。

常見降維技術比較:保持資訊完整性下降低資料維度的可行性分析


為了讓本文易於閱讀和理解,僅顯示了一個資料集的預處理和分析。實驗從載入資料集開始。資料集被分成訓練集和測試集,然後在平均值為 0 且標準差為 1 的情況下進行標準化。

然後會將降維技術應用於訓練數據,並使用相同的參數對測試集進行變換以進行降維。對於迴歸,使用主成分分析(PCA)和奇異值分解(SVD)進行降維,另一方面對於分類,使用線性判別分析(LDA)

降維後就訓練多個機器學習模型進行測試,並比較了不同模型在不同降維方法獲得的不同資料集上的表現。

資料處理

讓我們透過載入第一個資料集開始這個過程,

import pandas as pd ## for data manipulation
df = pd.read_excel(r'RegressionAirQualityUCI.xlsx')
print(df.shape)
df.head()
登入後複製

常見降維技術比較:保持資訊完整性下降低資料維度的可行性分析

資料集包含15個列,其中一個是需要預測標籤。在繼續降維之前,日期和時間列也會被刪除。

X = df.drop(['CO(GT)', 'Date', 'Time'], axis=1)
y = df['CO(GT)']
X.shape, y.shape

#Output: ((9357, 12), (9357,))
登入後複製

為了訓練,我們需要將資料集分成訓練集和測試集,這樣可以評估降維方法和在降維特徵空間上訓練的機器學習模型的有效性。模型將使用訓練集進行訓練,表現將使用測試集進行評估。

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
X_train.shape, X_test.shape, y_train.shape, y_test.shape

#Output: ((7485, 12), (1872, 12), (7485,), (1872,))
登入後複製

在對資料集使用降維技術之前,可以對輸入資料進行縮放,這樣可以保證所有特徵處於相同的比例上。這對於線性模型來說是至關重要的,因為某些降維方法可以根據資料是否標準化以及對特徵的大小敏感而改變其輸出。

from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
X_train.shape, X_test.shape
登入後複製

主成分分析(PCA)

線性降維的PCA方法降低了資料的維數,同時保留了盡可能多的資料變異數。

這裡將使用Python sklearn.decomposition模組的PCA方法。要保留的元件數量是透過這個參數指定的,這個數字會影響在較小的特徵空間中包含多少維度。作為一種替代方法,我們可以設定要保留的目標方差,它根據捕獲的資料中的方差量建立組件的數量,我們在這裡設定為0.95

from sklearn.decomposition import PCA
pca = PCA(n_compnotallow=0.95)
X_train_pca = pca.fit_transform(X_train)
X_test_pca = pca.transform(X_test)
X_train_pca
登入後複製

常見降維技術比較:保持資訊完整性下降低資料維度的可行性分析

上述特徵代表什麼?主成分分析(PCA)將資料投射到低維空間,試圖盡可能保留資料中的不同之處。雖然這可能有助於特定的操作,但也可能使數據更難以理解。 ,PCA可以識別資料中的新軸,這些軸是初始特徵的線性融合。

奇異值分解(SVD)

SVD是一種線性降維技術,它將資料變異數較小的特徵投影到低維空間。我們需要設定降維後要保留的組件數量。這裡我們將把維度降低 2/3。

from sklearn.decomposition import TruncatedSVD
svd = TruncatedSVD(n_compnotallow=int(X_train.shape[1]*0.33))
X_train_svd = svd.fit_transform(X_train)
X_test_svd = svd.transform(X_test)
X_train_svd
登入後複製

常見降維技術比較:保持資訊完整性下降低資料維度的可行性分析

訓練迴歸模型

現在,我們將開始使用上述三種資料(原始資料集、PCA和SVD)對模型進行訓練和測試,並且我們使用多個模型進行比較。

import numpy as np
from sklearn.linear_model import LinearRegression
from sklearn.neighbors import KNeighborsRegressor
from sklearn.svm import SVR
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor
from sklearn.metrics import r2_score, mean_squared_error
import time
登入後複製

train_test_ML:這個函數將完成與模型的訓練和測試相關的重複任務。透過計算rmse和r2_score來評估所有模型的效能。並傳回包含所有詳細資訊和計算值的資料集,還將記錄每個模型在各自的資料集上訓練和測試所花費的時間。

def train_test_ML(dataset, dataform, X_train, y_train, X_test, y_test):
temp_df = pd.DataFrame(columns=['Data Set', 'Data Form', 'Dimensions', 'Model', 'R2 Score', 'RMSE', 'Time Taken'])
for i in [LinearRegression, KNeighborsRegressor, SVR, DecisionTreeRegressor, RandomForestRegressor, GradientBoostingRegressor]:
start_time = time.time()
reg = i().fit(X_train, y_train)
y_pred = reg.predict(X_test)
r2 = np.round(r2_score(y_test, y_pred), 2)
rmse = np.round(np.sqrt(mean_squared_error(y_test, y_pred)), 2)
end_time = time.time()
time_taken = np.round((end_time - start_time), 2)
temp_df.loc[len(temp_df)] = [dataset, dataform, X_train.shape[1], str(i).split('.')[-1][:-2], r2, rmse, time_taken]
return temp_df
登入後複製

原始資料:

original_df = train_test_ML('AirQualityUCI', 'Original', X_train, y_train, X_test, y_test)
original_df
登入後複製

常見降維技術比較:保持資訊完整性下降低資料維度的可行性分析

可以看到KNN迴歸器和隨機森林在輸入原始資料時表現相對較好,隨機森林的訓練時間是最長的。

PCA

pca_df = train_test_ML('AirQualityUCI', 'PCA Reduced', X_train_pca, y_train, X_test_pca, y_test)
pca_df
登入後複製

常見降維技術比較:保持資訊完整性下降低資料維度的可行性分析

#

与原始数据集相比,不同模型的性能有不同程度的下降。梯度增强回归和支持向量回归在两种情况下保持了一致性。这里一个主要的差异也是预期的是模型训练所花费的时间。与其他模型不同的是,SVR在这两种情况下花费的时间差不多。

SVD

svd_df = train_test_ML('AirQualityUCI', 'SVD Reduced', X_train_svd, y_train, X_test_svd, y_test)
svd_df
登入後複製

常見降維技術比較:保持資訊完整性下降低資料維度的可行性分析

与PCA相比,SVD以更大的比例降低了维度,随机森林和梯度增强回归器的表现相对优于其他模型。

回归模型分析

对于这个数据集,使用主成分分析时,数据维数从12维降至5维,使用奇异值分析时,数据降至3维。

  • 就机器学习性能而言,数据集的原始形式相对更好。造成这种情况的一个潜在原因可能是,当我们使用这种技术降低维数时,在这个过程中会发生信息损失。
  • 但是线性回归、支持向量回归和梯度增强回归在原始和PCA案例中的表现是一致的。
  • 在我们通过SVD得到的数据上,所有模型的性能都下降了。
  • 在降维情况下,由于特征变量的维数较低,模型所花费的时间减少了。

将类似的过程应用于其他六个数据集进行测试,得到以下结果:

常見降維技術比較:保持資訊完整性下降低資料維度的可行性分析

我们在各种数据集上使用了SVD和PCA,并对比了在原始高维特征空间上训练的回归模型与在约简特征空间上训练的模型的有效性

  • 原始数据集始终优于由降维方法创建的低维数据。这说明在降维过程中可能丢失了一些信息。
  • 当用于更大的数据集时,降维方法有助于显著减少数据集中的特征数量,从而提高机器学习模型的有效性。对于较小的数据集,改影响并不显著。
  • 模型的性能在original和pca_reduced两种模式下保持一致。如果一个模型在原始数据集上表现得更好,那么它在PCA模式下也会表现得更好。同样,较差的模型也没有得到改进。
  • 在SVD的情况下,模型的性能下降比较明显。这可能是n_components数量选择的问题,因为太小数量肯定会丢失数据。
  • 决策树在SVD数据集时一直是非常差的,因为它本来就是一个弱学习器

训练分类模型

对于分类我们将使用另一种降维方法:LDA。机器学习和模式识别任务经常使用被称为线性判别分析(LDA)的降维方法。这种监督学习技术旨在最大化几个类或类别之间的距离,同时将数据投影到低维空间。由于它的作用是最大化类之间的差异,因此只能用于分类任务。

from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier
from sklearn.metrics import accuracy_score, f1_score, recall_score, precision_score
登入後複製

继续我们的训练方法

def train_test_ML2(dataset, dataform, X_train, y_train, X_test, y_test):
temp_df = pd.DataFrame(columns=['Data Set', 'Data Form', 'Dimensions', 'Model', 'Accuracy', 'F1 Score', 'Recall', 'Precision', 'Time Taken'])
for i in [LogisticRegression, KNeighborsClassifier, SVC, DecisionTreeClassifier, RandomForestClassifier, GradientBoostingClassifier]:
start_time = time.time()
reg = i().fit(X_train, y_train)
y_pred = reg.predict(X_test)
accuracy = np.round(accuracy_score(y_test, y_pred), 2)
f1 = np.round(f1_score(y_test, y_pred, average='weighted'), 2)
recall = np.round(recall_score(y_test, y_pred, average='weighted'), 2)
precision = np.round(precision_score(y_test, y_pred, average='weighted'), 2)
end_time = time.time()
time_taken = np.round((end_time - start_time), 2)
temp_df.loc[len(temp_df)] = [dataset, dataform, X_train.shape[1], str(i).split('.')[-1][:-2], accuracy, f1, recall, precision, time_taken]
return temp_df
登入後複製

开始训练

from sklearn.discriminant_analysis import LinearDiscriminantAnalysis

lda = LinearDiscriminantAnalysis()
X_train_lda = lda.fit_transform(X_train, y_train)
X_test_lda = lda.transform(X_test)
登入後複製

预处理、分割和数据集的缩放,都与回归部分相同。在对8个不同的数据集进行新联后我们得到了下面结果:

常見降維技術比較:保持資訊完整性下降低資料維度的可行性分析

分类模型分析

我们比较了上面所有的三种方法SVD、LDA和PCA。

  • LDA数据集通常优于原始形式的数据和由其他降维方法创建的低维数据,因为它旨在识别最有效区分类的特征的线性组合,而原始数据和其他无监督降维技术不关心数据集的标签。
  • 降维技术在应用于更大的数据集时,可以极大地减少了数据集中的特征数量,这提高了机器学习模型的效率。在较小的数据集上,影响不是特别明显。除了LDA(它在这些情况下也很有效),因为它们在一些情况下,如二元分类,可以将数据集的维度减少到只有一个。
  • 当我们在寻找一定的性能时,LDA可以是分类问题的一个非常好的起点。
  • SVD与回归一样,模型的性能下降很明显。需要调整n_components的选择。

总结

我们比较了一些降维技术的性能,如奇异值分解(SVD)、主成分分析(PCA)和线性判别分析(LDA)。我们的研究结果表明,方法的选择取决于特定的数据集和手头的任务。

對於迴歸任務,我們發現PCA通常比SVD表現得更好。在分類的情況下,LDA優於SVD和PCA,以及原始資料集。線性判別分析(LDA)在分類任務中始終擊敗主成分分析(PCA)的這個是很重要的,但這並不意味著LDA在一般情況下是一種更好的技術。這是因為LDA是一種監督學習演算法,它依賴有標籤的數據來定位數據中最具鑑別性的特徵,而PCA是一種無監督技術,它不需要有標籤的數據,並尋求在數據中保持盡可能多的變異數。因此,PCA可能更適合於無監督的任務或可解釋性至關重要的情況,而LDA可能更適合涉及標記資料的任務。

雖然降維技術可以幫助減少資料集中的特徵數量,並提高機器學習模型的效率,但重要的是要考慮對模型性能和結果可解釋性的潛在影響。

本文完整程式碼:

https://github.com/salmankhi/DimensionalityReduction/blob/main/Notebook_25373.ipynb

以上是常見降維技術比較:保持資訊完整性下降低資料維度的可行性分析的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

AI Hentai Generator

AI Hentai Generator

免費產生 AI 無盡。

熱門文章

R.E.P.O.能量晶體解釋及其做什麼(黃色晶體)
1 個月前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳圖形設置
1 個月前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您聽不到任何人,如何修復音頻
1 個月前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.聊天命令以及如何使用它們
1 個月前 By 尊渡假赌尊渡假赌尊渡假赌

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

15個值得推薦的開源免費圖片標註工具 15個值得推薦的開源免費圖片標註工具 Mar 28, 2024 pm 01:21 PM

圖像標註是將標籤或描述性資訊與圖像相關聯的過程,以賦予圖像內容更深層的含義和解釋。這個過程對於機器學習至關重要,它有助於訓練視覺模型以更準確地識別圖像中的各個元素。透過為圖像添加標註,使得電腦能夠理解圖像背後的語義和上下文,從而提高對圖像內容的理解和分析能力。影像標註的應用範圍廣泛,涵蓋了許多領域,如電腦視覺、自然語言處理和圖視覺模型具有廣泛的應用領域,例如,輔助車輛識別道路上的障礙物,幫助疾病的檢測和診斷透過醫學影像識別。本文主要推薦一些較好的開源免費的圖片標註工具。 1.Makesens

一文帶您了解SHAP:機器學習的模型解釋 一文帶您了解SHAP:機器學習的模型解釋 Jun 01, 2024 am 10:58 AM

在機器學習和資料科學領域,模型的可解釋性一直是研究者和實踐者關注的焦點。隨著深度學習和整合方法等複雜模型的廣泛應用,理解模型的決策過程變得尤為重要。可解釋人工智慧(ExplainableAI|XAI)透過提高模型的透明度,幫助建立對機器學習模型的信任和信心。提高模型的透明度可以透過多種複雜模型的廣泛應用等方法來實現,以及用於解釋模型的決策過程。這些方法包括特徵重要性分析、模型預測區間估計、局部可解釋性演算法等。特徵重要性分析可以透過評估模型對輸入特徵的影響程度來解釋模型的決策過程。模型預測區間估計

透過學習曲線辨識過擬合和欠擬合 透過學習曲線辨識過擬合和欠擬合 Apr 29, 2024 pm 06:50 PM

本文將介紹如何透過學習曲線來有效辨識機器學習模型中的過度擬合和欠擬合。欠擬合和過擬合1、過擬合如果一個模型對資料進行了過度訓練,以至於它從中學習了噪聲,那麼這個模型就被稱為過擬合。過度擬合模型非常完美地學習了每一個例子,所以它會錯誤地分類一個看不見的/新的例子。對於一個過度擬合的模型,我們會得到一個完美/接近完美的訓練集分數和一個糟糕的驗證集/測試分數。略有修改:"過擬合的原因:用一個複雜的模型來解決一個簡單的問題,從資料中提取雜訊。因為小資料集作為訓練集可能無法代表所有資料的正確表示。"2、欠擬合如

通透!機器學習各大模型原理的深度剖析! 通透!機器學習各大模型原理的深度剖析! Apr 12, 2024 pm 05:55 PM

通俗來說,機器學習模型是一種數學函數,它能夠將輸入資料映射到預測輸出。更具體地說,機器學習模型是一種透過學習訓練數據,來調整模型參數,以最小化預測輸出與真實標籤之間的誤差的數學函數。在機器學習中存在多種模型,例如邏輯迴歸模型、決策樹模型、支援向量機模型等,每種模型都有其適用的資料類型和問題類型。同時,不同模型之間存在著許多共通性,或者說有一條隱藏的模型演化的路徑。將聯結主義的感知機為例,透過增加感知機的隱藏層數量,我們可以將其轉化為深度神經網路。而對感知機加入核函數的話就可以轉換為SVM。這一

人工智慧在太空探索和人居工程中的演變 人工智慧在太空探索和人居工程中的演變 Apr 29, 2024 pm 03:25 PM

1950年代,人工智慧(AI)誕生。當時研究人員發現機器可以執行類似人類的任務,例如思考。後來,在1960年代,美國國防部資助了人工智慧,並建立了實驗室進行進一步開發。研究人員發現人工智慧在許多領域都有用武之地,例如太空探索和極端環境中的生存。太空探索是對宇宙的研究,宇宙涵蓋了地球以外的整個宇宙空間。太空被歸類為極端環境,因為它的條件與地球不同。要在太空中生存,必須考慮許多因素,並採取預防措施。科學家和研究人員認為,探索太空並了解一切事物的現狀有助於理解宇宙的運作方式,並為潛在的環境危機

使用C++實現機器學習演算法:常見挑戰及解決方案 使用C++實現機器學習演算法:常見挑戰及解決方案 Jun 03, 2024 pm 01:25 PM

C++中機器學習演算法面臨的常見挑戰包括記憶體管理、多執行緒、效能最佳化和可維護性。解決方案包括使用智慧指標、現代線程庫、SIMD指令和第三方庫,並遵循程式碼風格指南和使用自動化工具。實作案例展示如何利用Eigen函式庫實現線性迴歸演算法,有效地管理記憶體和使用高效能矩陣操作。

可解釋性人工智慧:解釋複雜的AI/ML模型 可解釋性人工智慧:解釋複雜的AI/ML模型 Jun 03, 2024 pm 10:08 PM

譯者|李睿審校|重樓人工智慧(AI)和機器學習(ML)模型如今變得越來越複雜,這些模型產生的產出是黑盒子-無法向利害關係人解釋。可解釋性人工智慧(XAI)致力於透過讓利害關係人理解這些模型的工作方式來解決這個問題,確保他們理解這些模型實際上是如何做出決策的,並確保人工智慧系統中的透明度、信任度和問責制來解決這個問題。本文探討了各種可解釋性人工智慧(XAI)技術,以闡明它們的基本原理。可解釋性人工智慧至關重要的幾個原因信任度和透明度:為了讓人工智慧系統被廣泛接受和信任,使用者需要了解決策是如何做出的

你所不知道的機器學習五大學派 你所不知道的機器學習五大學派 Jun 05, 2024 pm 08:51 PM

機器學習是人工智慧的重要分支,它賦予電腦從數據中學習的能力,並能夠在無需明確編程的情況下改進自身能力。機器學習在各個領域都有廣泛的應用,從影像辨識和自然語言處理到推薦系統和詐欺偵測,它正在改變我們的生活方式。機器學習領域存在著多種不同的方法和理論,其中最具影響力的五種方法被稱為「機器學習五大派」。這五大派分別為符號派、聯結派、進化派、貝葉斯派和類推學派。 1.符號學派符號學(Symbolism),又稱符號主義,強調利用符號進行邏輯推理和表達知識。該學派認為學習是一種逆向演繹的過程,透過現有的

See all articles