首頁 > Java > java教程 > 主體

Java二元樹的遞迴與非遞歸遍歷方法是什麼

WBOY
發布: 2023-04-24 13:04:14
轉載
1382 人瀏覽過

前言

二元樹的遍歷方法分為前序遍歷,中序遍歷,後續遍歷,層序遍歷。

Java二元樹的遞迴與非遞歸遍歷方法是什麼

1.遞歸遍歷

對於遞歸,就不得不說遞歸三要素:以前序遍歷為例

遞歸入參參數和回傳值

因為要列印出前序遍歷節點的數值,所以參數裡需要傳入List在放節點的數值,除了這一點就不需要在處理什麼資料了也不需要有回傳值,所以遞歸函數回傳型別就是void,程式碼如下:

public void preorder(TreeNode root, List<Integer> result)
登入後複製

確定終止條件

在遞迴的過程中,如何算是遞迴結束了呢,當然是目前遍歷的節點是空了,那麼本層遞歸就要結束了,所以如果當前遍歷的這個節點是空,就直接return

if (root == null) return;
登入後複製

單層循環邏輯

前序遍歷是中左右的循序,所以在單層遞歸的邏輯,是要先取中節點的數值,程式碼如下:

result.add(root.val);
preorder(root.left, result);
preorder(root.right, result);
登入後複製
// 前序遍历·递归·LC144_二叉树的前序遍历
class Solution {
    public List preorderTraversal(TreeNode root) {
        List result = new ArrayList();
        preorder(root, result);
        return result;
    }
    public void preorder(TreeNode root, List<Integer> result) {
        if (root == null) {
            return;
        }
        result.add(root.val);//先保存中间节点
        preorder(root.left, result); //处理左边节点
        preorder(root.right, result); //处理右边节点
    }
}
// 中序遍历·递归·LC94_二叉树的中序遍历
class Solution {
    public List inorderTraversal(TreeNode root) {
        List res = new ArrayList<>();
        inorder(root, res);
        return res;
    }
    void inorder(TreeNode root, List list) {
        if (root == null) {
            return;
        }
        inorder(root.left, list); //先处理左边节点
        list.add(root.val);       //保存中间当前的节点
        inorder(root.right, list);//先处理右边节点
    }
}
// 后序遍历·递归·LC145_二叉树的后序遍历
class Solution {
    public List postorderTraversal(TreeNode root) {
        List res = new ArrayList<>();
        postorder(root, res);
        return res;
    }
    void postorder(TreeNode root, List list) {
        if (root == null) {
            return;
        }
        postorder(root.left, list);  //先处理左边节点
        postorder(root.right, list); //再处理右边节点
        list.add(root.val);          //保存最后  
    }
}
登入後複製

2.非迭代遍歷

//前序遍历
class Solution {
    public List<Integer> preorderTraversal(TreeNode root) {
        List<Integer> res = new ArrayList<>();
        Stack<TreeNode> stack = new Stack();
        if (root == null) return res;
        stack.push(root);
        while (!stack.isEmpty()) {
            TreeNode node = stack.pop();
            res.add(node.val);
            if (node.right != null) { //先将右孩子入栈,因为它在最后
                stack.push(node.right);
            }
            if (node.left != null) { //左孩子入栈再出栈
                stack.push(node.left);
            }
        }
        return res;
    }
}
//中序遍历
class Solution {
    public List<Integer> inorderTraversal(TreeNode root) {
        List<Integer> res = new ArrayList<>();
        if (root == null) return res;
        Stack<TreeNode> stack = new Stack();
        TreeNode cur = root;
        while (cur != null || !stack.isEmpty()) {
            //如果可以,一直往左下探
            if (cur != null) {
                stack.push(cur);
                cur = cur.left;
            } else {
                cur = stack.pop(); //弹出来的肯定是叶子节点或中间节点
                res.add(cur.val); //将这个节点加入list
                cur = cur.right; //查看当前节点是否有右节点,如果右,肯定是中间节点,如果没有,就是叶子节点,继续弹出就可以
            }
        }
        return res;
    }
}
//后序遍历
//再来看后序遍历,先序遍历是中左右,后续遍历是左右中,那么我们只需要调整一下先序遍历的代码顺序,就变成中右左的遍历顺序,然后在反转result数组,输出的结果顺序就是左右中
class Solution {
    public List<Integer> postorderTraversal(TreeNode root) {
        List<Integer> res = new ArrayList<>();
        if (root == null) return res;
        Stack<TreeNode> stack = new Stack();
        stack.push(root);
        while (!stack.isEmpty()) {
            TreeNode node = stack.pop();
            res.add(node.val);
            if (node.left != null) stack.push(node.left); // 相对于前序遍历,这更改一下入栈顺序 (空节点不入栈)
            if (node.right != null) stack.push(node.right);// 空节点不入栈 
        }
        Collections.reverse(res); // 将结果反转之后就是左右中的顺序了
        return res;
    }
}
登入後複製

3.二元樹的統一迭代法

//前序遍历
class Solution {
    public List<Integer> preorderTraversal(TreeNode root) {
        List<Integer> result = new LinkedList<>();
        Stack<TreeNode> st = new Stack<>();
        if (root != null) st.push(root);
        while (!st.empty()) {
            TreeNode node = st.peek();
            if (node != null) {
                st.pop(); // 将该节点弹出,避免重复操作,下面再将右中左节点添加到栈中
                if (node.right!=null) st.push(node.right);  // 添加右节点(空节点不入栈)
                if (node.left!=null) st.push(node.left);    // 添加左节点(空节点不入栈)
                st.push(node);                          // 添加中节点
                st.push(null); // 中节点访问过,但是还没有处理,加入空节点做为标记。
            } else { // 只有遇到空节点的时候,才将下一个节点放进结果集
                st.pop();           // 将空节点弹出
                node = st.peek();    // 重新取出栈中元素
                st.pop();
                result.add(node.val); // 加入到结果集
            }
        }
        return result;
    }
}
//中序遍历
class Solution {
    public List<Integer> inorderTraversal(TreeNode root) {
        List<Integer> result = new LinkedList<>();
        Stack<TreeNode> st = new Stack<>();
        if (root != null) st.push(root);
        while (!st.empty()) {
            TreeNode node = st.peek();
            if (node != null) {
                st.pop(); // 将该节点弹出,避免重复操作,下面再将右中左节点添加到栈中
                if (node.right!=null) st.push(node.right);  // 添加右节点(空节点不入栈)
                st.push(node);                          // 添加中节点
                st.push(null); // 中节点访问过,但是还没有处理,加入空节点做为标记。
                if (node.left!=null) st.push(node.left);    // 添加左节点(空节点不入栈)
            } else { // 只有遇到空节点的时候,才将下一个节点放进结果集
                st.pop();           // 将空节点弹出
                node = st.peek();    // 重新取出栈中元素
                st.pop();
                result.add(node.val); // 加入到结果集
            }
        }
        return result;
    }
}
//后序遍历
class Solution {
    public List<Integer> postorderTraversal(TreeNode root) {
        List<Integer> result = new LinkedList<>();
        Stack<TreeNode> st = new Stack<>();
        if (root != null) st.push(root);
        while (!st.empty()) {
            TreeNode node = st.peek();
            if (node != null) {
                st.pop(); // 将该节点弹出,避免重复操作,下面再将右中左节点添加到栈中
                st.push(node);                          // 添加中节点
                st.push(null); // 中节点访问过,但是还没有处理,加入空节点做为标记。
                if (node.right!=null) st.push(node.right);  // 添加右节点(空节点不入栈)
                if (node.left!=null) st.push(node.left);    // 添加左节点(空节点不入栈)         
            } else { // 只有遇到空节点的时候,才将下一个节点放进结果集
                st.pop();           // 将空节点弹出
                node = st.peek();    // 重新取出栈中元素
                st.pop();
                result.add(node.val); // 加入到结果集
            }
        }
        return result;
    }
}
登入後複製

以上是Java二元樹的遞迴與非遞歸遍歷方法是什麼的詳細內容。更多資訊請關注PHP中文網其他相關文章!

相關標籤:
來源:yisu.com
本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
熱門教學
更多>
最新下載
更多>
網站特效
網站源碼
網站素材
前端模板