Python程式設計必備的12個必備程式碼片段
1、正規表示式
正規表示式是 Python 中匹配模式、搜尋和取代字串、驗證字串等的最佳技術。現在,您無需為此類工作使用循環和清單。
查看以下關於驗證電子郵件格式的正規表示式片段程式碼範例:
# Regular Expression Check Mail import re def Check_Mail(email): pattern = re.compile(r'([A-Za-z0-9]+[.-_])*[A-Za-z0-9]+@[A-Za-z0-9-]+(.[A-Z|a-z]{2,})+') if re.fullmatch(pattern, email): print("valid") else: print("Invalid") Check_Mail("codedev101@gmail.com") #valid Check_Mail("codedev101-haider@uni.edu")#Invalid Check_Mail("code-101-work@my.net") # Invalid
2、Pro Slicing
這個簡單的程式碼片段將幫助您像專業人士一樣對清單進行切片。請參閱下面的範例程式碼:
# Pro Slicing # list[start:end:step] mylist = [1, 2, 3, 5, 5, 6, 7, 8, 9, 12] mail ="codedev-medium@example.com" print(mylist[4:-3]) # 5 6 7 print(mail[8 : 14]) # medium
3、Swap without Temp
#您是否使用 Temp 變數來交換兩個數據,而不是在 Python 中您不需要使用它?在此程式碼片段中,我將與您分享如何在不使用 temp 的情況下交換兩個資料變數。
看下面的程式碼:
# Swap without Temp i = 134 j = 431 [i, j] = [j, i] print(i) #431 print(j) #134
4、Magic of F-string
我們可能使用format() 方法或「%」方法來格式化字串中的變數。這段程式碼將向您介紹 F 字串,它比另一種格式要好得多。
看看下面的範例程式碼:
# Magic of f-String # Normal Method name = "Codedev" lang = "Python" data = "{} is writing article on {}".format(name, lang) print(data) # Pro Method with f-string data = f"{name} is writing article on {lang}" print(data
5、取得索引
現在您不再需要 Loop 來尋找特定元素的索引。您可以使用清單中的 index() 方法來完成。
查看下面的程式碼:
# Get Index x = [10 ,20, 30, 40, 50] print(x.index(10)) # 0 print(x.index(30)) # 4 print(x.index(50)) # 2
6、基於Another List的排序清單
此程式碼片段將向您展示如何根據另一個列表對清單進行排序。當您需要根據所需的位置進行排序時,此程式碼片段非常方便。
# Sort List based on another List list1 =["a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m"] list2 = [ 0, 1, 1, 1, 2, 2, 0, 1, 1, 3, 4] C = [x for _, x in sorted(zip(list2, list1), key=lambda pair: pair[0])] print(C) # ['a', 'g', 'b', 'c', 'd', 'h', 'i', 'e', 'f', 'j', 'k']
7、 反轉字典
現在您不需要循環來反轉任何字典。此程式碼段程式碼將在第二次嘗試該程式碼段程式碼時反轉字典。
# Invert the Dictionary def Invert_Dictionary(data): return{value: key for key, value in data.items()} data = {"A": 1, "B":2, "C": 3} invert = Invert_Dictionary(data) print(invert) # {1: 'A', 2: 'B', 3: 'C'}
8、多執行緒
多執行緒將幫助您同時並行運行 Python 函數。假設您想同時執行 5 個函數,而無需等待每個函數完成。
查看下面的程式碼片段:
# Multi-threading import threading def func(num): for x in range(num): print(x) if __name__ == "__main__": t1 = threading.Thread(target=func, args=(10,)) t2 = threading.Thread(target=func, args=(20,)) t1.start() t2.start() t1.join() t2.join()
9、清單中出現最多的元素
此片段程式碼將簡單地計算清單中出現次數最多的元素。我已經展示了兩種方法來做到這一點。
在下面查看它:
# Element Occur most in List from collections import Counter mylst = ["a", "a", "b", "c", "a", "b","b", "c", "d", "a"] # Method 1 def occur_most1(mylst): return max(set(mylst), key=mylst.count) print(occur_most1(mylst)) # a # Method 2 # Much Faster then Method 1 def occur_most2(mylst): data = Counter(mylst) return data.most_common(1)[0][0] print(occur_most2(mylst)) # a
10、分割線
有一個逐行格式的原始文本,並希望將其分成幾行。此程式碼段將在一秒鐘內解決您的問題。
# Split lines data1 = """Hello to Python""" data2 = """Programming Langauges""" print(data1.split("n")) # ['Hello to', 'Python'] print(data2.split("n")) # ['Programming', ' Langauges']
11、 將清單對應到字典
此程式碼片段將幫助您將任意兩個清單轉換為字典格式。要了解它是如何運作的,請查看下面的程式碼:
# Map List into Dictionary def Convert_to_Dict(k, v): return dict(zip(k, v)) k = ["a", "b", "c", "d", "e"] v = [1, 2, 3, 4, 5] print(Convert_to_Dict(k, v)) # {'a': 1, 'b': 2, 'c': 3, 'd': 4, 'e': 5}
12、解析電子表格
現在您不需要Pandas 或任何其他外部Python 套件來解析電子表格。 Python 有一個內建的 CSV 模組,這段程式碼將向您展示如何使用它。
# Parse Spreadsheet import csv #Reading with open("test.csv", "r") as file: csv_reader = csv.reader(file) for row in csv_reader: print(row) file.close() #Writing header = ["ID", "Languages"] csv_data = [234, "Python", 344, "JavaScript", 567, "Dart"] with open("test2.csv", 'w', newline="") as file: csv_writer = csv.writer(file) csv_writer.writerow(header) csv_writer.writerows(csv_data)
以上是Python程式設計必備的12個必備程式碼片段的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

熱門話題

MySQL 有免費的社區版和收費的企業版。社區版可免費使用和修改,但支持有限,適合穩定性要求不高、技術能力強的應用。企業版提供全面商業支持,適合需要穩定可靠、高性能數據庫且願意為支持買單的應用。選擇版本時考慮的因素包括應用關鍵性、預算和技術技能。沒有完美的選項,只有最合適的方案,需根據具體情況謹慎選擇。

HadiDB:輕量級、高水平可擴展的Python數據庫HadiDB(hadidb)是一個用Python編寫的輕量級數據庫,具備高度水平的可擴展性。安裝HadiDB使用pip安裝:pipinstallhadidb用戶管理創建用戶:createuser()方法創建一個新用戶。 authentication()方法驗證用戶身份。 fromhadidb.operationimportuseruser_obj=user("admin","admin")user_obj.

MySQL Workbench 可以連接 MariaDB,前提是配置正確。首先選擇 "MariaDB" 作為連接器類型。在連接配置中,正確設置 HOST、PORT、USER、PASSWORD 和 DATABASE。測試連接時,檢查 MariaDB 服務是否啟動,用戶名和密碼是否正確,端口號是否正確,防火牆是否允許連接,以及數據庫是否存在。高級用法中,使用連接池技術優化性能。常見錯誤包括權限不足、網絡連接問題等,調試錯誤時仔細分析錯誤信息和使用調試工具。優化網絡配置可以提升性能

直接通過 Navicat 查看 MongoDB 密碼是不可能的,因為它以哈希值形式存儲。取回丟失密碼的方法:1. 重置密碼;2. 檢查配置文件(可能包含哈希值);3. 檢查代碼(可能硬編碼密碼)。

無法連接 MySQL 可能是由於以下原因:MySQL 服務未啟動、防火牆攔截連接、端口號錯誤、用戶名或密碼錯誤、my.cnf 中的監聽地址配置不當等。排查步驟包括:1. 檢查 MySQL 服務是否正在運行;2. 調整防火牆設置以允許 MySQL 監聽 3306 端口;3. 確認端口號與實際端口號一致;4. 檢查用戶名和密碼是否正確;5. 確保 my.cnf 中的 bind-address 設置正確。

MySQL 可在無需網絡連接的情況下運行,進行基本的數據存儲和管理。但是,對於與其他系統交互、遠程訪問或使用高級功能(如復制和集群)的情況,則需要網絡連接。此外,安全措施(如防火牆)、性能優化(選擇合適的網絡連接)和數據備份對於連接到互聯網的 MySQL 數據庫至關重要。

MySQL數據庫性能優化指南在資源密集型應用中,MySQL數據庫扮演著至關重要的角色,負責管理海量事務。然而,隨著應用規模的擴大,數據庫性能瓶頸往往成為製約因素。本文將探討一系列行之有效的MySQL性能優化策略,確保您的應用在高負載下依然保持高效響應。我們將結合實際案例,深入講解索引、查詢優化、數據庫設計以及緩存等關鍵技術。 1.數據庫架構設計優化合理的數據庫架構是MySQL性能優化的基石。以下是一些核心原則:選擇合適的數據類型選擇最小的、符合需求的數據類型,既能節省存儲空間,又能提升數據處理速度

作為數據專業人員,您需要處理來自各種來源的大量數據。這可能會給數據管理和分析帶來挑戰。幸運的是,兩項 AWS 服務可以提供幫助:AWS Glue 和 Amazon Athena。
