如何利用ChatGPT提升安全檢測智能化水平
ChatGPT(Chat Generative Pre-trained Transformer)是一款美國OpenAI研發的聊天機器人程序,能夠透過理解和學習人類語言來進行對話,根據聊天的上下文與使用者互動,真正像人類一樣聊天交流。它甚至能完成撰寫郵件、影片腳本、文案、程式碼、論文等任務。
ChatGPT的演算法是基於Transformer架構,這是一種使用自註意力機制處理輸入資料的深度神經網路。 Transformer架構廣泛應用於語言翻譯、文字摘要、問答等自然語言處理任務。 ChatGPT使用了GPT-3.5大規模語言模型(LLM Large Language Model),並在該模型的基礎上,引入強化學習來微調預訓練的語言模型。這裡的強化學習採用的是RLHF(Reinforcement Learning from Human Feedback),也就是手動標註方式。目的是透過其獎勵懲罰機制,讓LLM模型學會理解各種自然語言處理任務,並學會從helpfulness、honest、harmless三個維度判斷什麼樣的答案是優質的。
ChatGPT模型的主要訓練流程如下:
- 首先利用一系列問答對模型進行監督訓練(也叫監督指令微調)。
- 利用強化學習對模型進一步指令微調,即模型在給定環境中,不斷根據環境的獎勵和懲罰,擬合到一個最適應環境的狀態。具體來說,就是在人類的參與下訓練一個獎賞網絡,這個獎賞網絡具有對多個聊天回復進行好壞排序的能力。
- 利用這個獎賞網絡,進一步透過強化學習不斷優化模型。
哪些環節可以應用ChatGTP
我們依照DPI引擎的解包流程,將原始流量解析出關鍵字段數據,進行規則比對。如果能匹配到規則,則表示封包有攻擊行為;如果不能匹配,則表示封包風險較低。 DPI引擎收到的流量如下圖:
DPI引擎會依照會話將流量分組,在同一個群組的報文,一般為同一五元組的請求回應封包:
DPI引擎會將流量依照協定層級進行拆解,直到解析出所有的欄位。
DPI引擎會提取其中應用層的明文請求,作為待檢測內容:
ChatGPT作為一種大型自然語言處理模型,可以理解HTTP原始封包訊息,這樣無論攻擊出現在URL、Cookies或Referer中,都能順利偵測到。
ChatGPT流量偵測實踐
ChatGPT、New Bing等攻擊判斷模組,會呼叫OpenAI相關API接口,使用提問的方式讓ChatGPT、New Bing等進行攻擊判斷,示意程式碼如下:
import openai openai.api_key = "sk-Bew1dsFo3YXoY2***********81AkBHmY48ijxu"# api token 用来认证 def get_answer(prompt, max_tokens): # 定义一个获取答案的函数 try: response = openai.Completion.create( model = "text-davinci-003", # 模型名称 prompt = prompt,# 问题 temperature = 0.7, max_tokens = max_tokens,# 返回内容的长度限制 stream = False, # False就是一次性返回, True 就是一个个打出来像打字机, 返回的是迭代器, 需要后面代码处理. 此处没有处理 所以用False top_p = 1, frequency_penalty = 0, presence_penalty = 0 ) return 0, response['choices'][0]['text'].strip()# 获取返回值关键返回内容 except Exception as e:# 异常处理 return str(e), None
透過上述函數,就可以達到類似向ChatGPT提問的效果(使用模型為text-davinci-003),如下圖:
#ChatGPT會回傳明確的是否存在攻擊行為的結論以及行為描述,這樣就完成了一次攻擊判斷。
如上圖,可以將流量中大量需要判斷的請求,分別存入不同的文件,由ChatGPT進行攻擊判讀,範例程式碼如下:
def main(read_dir = 'detect'):# 定义main函数 args = []# 缓存列表 global sign_req, all_req# 识别计数 for rf in walk_dir(read_dir, ['.txt']):# 遍历待检测目录 all_req += 1# 总数据包数自增1 content = read_fileA(rf, 'str')[:2048]# 提取报文文件前2048个字符 key_content = content.split('rnrnrn')[0][:1024]# 提取http请求 if len(key_content) < 10: continue# 如果长度太小就不检测 err, sign, disc = judge_attack(key_content, rf_rst)# 调用ChatGPT接口进行攻击检测 if sign: sign_req += 1# 如果检测到攻击, 攻击计数自增1 print('r' + f' 已检测 {all_req: 4} 个报文, 识别到攻击 {sign_req} 个, 检出率: {sign_req/all_req:0.2%}', end='', flush=True) # 打印结论
如此就可以做到批次封包攻擊偵測。
攻擊樣本來自Nuclei對靶機的掃描和全PoC偵測,因為有一些請求從單一封包中確實看不出來是否有威脅。
上述情況可能需要更多上下文才能判斷,此次已去除此類無法準確判斷的請求例,盡量給一些人工條件下能夠準確判斷的範例,整體檢測結果如下圖:
可見ChatGPT對流量偵測的準確率是非常高的,基本上相當於一個安全專家進行快速判斷,其安全偵測能力值得期待。
有興趣的讀者可以查看完整的專案源碼,連結為:https://github.com/VitoYane/PcapSplit
未來展望
未來,ChatGPT在網路安全中將扮演什麼角色、有什麼影響,我們很難進行準確預測,這取決於它的使用方式和使用意圖。來自人工智慧的威脅並不是一個新問題,對網路安全從業者來說,重要的是及時意識到ChatGPT的潛在風險並採取適當的措施來應對。
安全專家預測,國家背景的駭客將率先在網路攻擊中利用ChatGPT,而該技術最終會在更多的攻擊組織中得到大規模的使用,防守方需要開始研發能夠抵禦此類攻擊的系統。
從網路安全防護的角度來看,企業機構可以採取針對性的應對措施,對ChatGPT等類似模型進行培訓,標記惡意活動和惡意程式碼,同時對其設定難以繞過的護欄。對於ChatGPT引發的威脅,可以提供員工新型的網路意識培訓,掌握辨識社會工程攻擊的知識,以便辨識ChatGPT等人工智慧工具所創造的釣魚攻擊。
當然只是這樣還不夠。 ChatGPT等人工智慧工具會以比人類罪犯更快的速度製造出新的威脅,傳播威脅的速度也將超過網路安全人員的反應速度。企業機構跟上這變化速度的唯一方法,是使用人工智慧來應對人工智慧。
總的來說:一方面,網路安全產業的研究人員、從業者、學術機構和企業組織可以利用ChatGPT的力量進行創新和協作,包括漏洞發現、事件回應和釣魚檢測;另一方面,隨著ChatGPT等工具的發展,未來開發新的網路安全工具更加重要。安全廠商應更積極地開發和部署基於行為(而非規則)的AI安全工具,來偵測人工智慧產生的攻擊。
以上是如何利用ChatGPT提升安全檢測智能化水平的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

熱門話題

DALL-E 3 於 2023 年 9 月正式推出,是比其前身大幅改進的車型。它被認為是迄今為止最好的人工智慧圖像生成器之一,能夠創建具有複雜細節的圖像。然而,在推出時,它不包括

本站6月27日訊息,剪映是由位元組跳動旗下臉萌科技開發的一款影片剪輯軟體,依託於抖音平台且基本面向該平台用戶製作短影片內容,並相容於iOS、安卓、Windows 、MacOS等作業系統。剪映官方宣布會員體系升級,推出全新SVIP,包含多種AI黑科技,例如智慧翻譯、智慧劃重點、智慧包裝、數位人合成等。價格方面,剪映SVIP月費79元,年費599元(本站註:折合每月49.9元),連續包月則為59元每月,連續包年為499元每年(折合每月41.6元) 。此外,剪映官方也表示,為提升用戶體驗,向已訂閱了原版VIP

編輯|ScienceAI問答(QA)資料集在推動自然語言處理(NLP)研究中發揮著至關重要的作用。高品質QA資料集不僅可以用於微調模型,也可以有效評估大語言模型(LLM)的能力,尤其是針對科學知識的理解和推理能力。儘管目前已有許多科學QA數據集,涵蓋了醫學、化學、生物等領域,但這些數據集仍有一些不足之處。其一,資料形式較為單一,大多數為多項選擇題(multiple-choicequestions),它們易於進行評估,但限制了模型的答案選擇範圍,無法充分測試模型的科學問題解答能力。相比之下,開放式問答

編輯|KX在藥物研發領域,準確有效地預測蛋白質與配體的結合親和力對於藥物篩選和優化至關重要。然而,目前的研究並沒有考慮到分子表面訊息在蛋白質-配體相互作用中的重要作用。基於此,來自廈門大學的研究人員提出了一種新穎的多模態特徵提取(MFE)框架,該框架首次結合了蛋白質表面、3D結構和序列的信息,並使用交叉注意機制進行不同模態之間的特徵對齊。實驗結果表明,該方法在預測蛋白質-配體結合親和力方面取得了最先進的性能。此外,消融研究證明了該框架內蛋白質表面資訊和多模態特徵對齊的有效性和必要性。相關研究以「S

本站7月5日消息,格芯(GlobalFoundries)於今年7月1日發布新聞稿,宣布收購泰戈爾科技(TagoreTechnology)的功率氮化鎵(GaN)技術及智慧財產權組合,希望在汽車、物聯網和人工智慧資料中心應用領域探索更高的效率和更好的效能。隨著生成式人工智慧(GenerativeAI)等技術在數位世界的不斷發展,氮化鎵(GaN)已成為永續高效電源管理(尤其是在資料中心)的關鍵解決方案。本站引述官方公告內容,在本次收購過程中,泰戈爾科技公司工程師團隊將加入格芯,進一步開發氮化鎵技術。 G

本站8月1日消息,SK海力士今天(8月1日)發布博文,宣布將出席8月6日至8日,在美國加州聖克拉拉舉行的全球半導體記憶體峰會FMS2024,展示諸多新一代產品。未來記憶體和儲存高峰會(FutureMemoryandStorage)簡介前身是主要面向NAND供應商的快閃記憶體高峰會(FlashMemorySummit),在人工智慧技術日益受到關注的背景下,今年重新命名為未來記憶體和儲存高峰會(FutureMemoryandStorage),以邀請DRAM和儲存供應商等更多參與者。新產品SK海力士去年在

在前端開發的世界裡,VSCode以其強大的功能和豐富的插件生態,成為了無數開發者的首選工具。而近年來,隨著人工智慧技術的快速發展,VSCode上的AI代碼助理也如雨後春筍般湧現,大大提升了開發者的編碼效率。 VSCode上的AI代碼助手,如雨後春筍般湧現,大大提升了開發者的編碼效率。它利用人工智慧技術,能夠聰明地分析程式碼,提供精準的程式碼補全、自動糾錯、語法檢查等功能,大大減少了開發者在編碼過程中的錯誤和繁瑣的手工工作。有今天,就為大家推薦12款VSCode前端開發AI程式碼助手,幫助你在程式設計之路

開放人工智慧終於進軍搜尋領域。這家舊金山公司最近宣布了一款具有搜尋功能的新人工智慧工具。 The Information 於今年 2 月首次報導,該新工具被恰當地稱為 SearchGPT,並具有 c
