四倍提速,位元組跳動開源高性能訓練推理引擎LightSeq技術揭秘
Transformer模型出自於Google團隊2017年發表的論文《Attention is all you need》,該論文中首次提出了使用Attention替換Seq2Seq模型循環結構的概念,為NLP領域帶來了極大衝擊。而隨著近年來研究的不斷推進,Transformer相關技術逐漸由自然語言處理流向其他領域。截止目前,Transformer系列模型已經成為了NLP、CV、ASR等領域的主流模型。
因此,如何更快地訓練和推理Transformer模型已成為業界的重要研究方向。低精度量化技術能夠透過降低資料的寬位來加速計算和通訊過程,是現階段模型訓練推理加速的重要手段。但美中不足的是,量化會造成精確度和效果的損失,需要透過量化感知和訓練等手段進行降損。針對以上痛點,位元組跳動研發升級了LightSeq訓練推理加速引擎3.0版本,首次同步實現了精度無損的Transformer模型量化訓練和量化推理。
LightSeq透過int8 GEMM實現了真量化訓練過程,並非採用業界廣泛使用的偽量化方法,能夠實現模型訓練速度4倍以上的提升。而透過PACT等量化策略,可以將量化訓練的損失降到最低。在將量化模型匯出為LightSeq支援格式後,可以進一步使用LightSeq量化推理引擎實現快速推理,在T4顯示卡上提速最高可達70%。
在7月21日的【T·TALK】技術分享活動中,我們特別邀請到了字節跳動演算法工程師、LightSeq核心開發者熊鷹老師做客直播間,為廣大觀眾揭秘字節跳動高性能訓練推理引擎LightSeq的技術原理與實務細節。無論你是演算法產業從業人員,或是熱衷於鑽研AI技術的開發者,相信你都能從這次分享中收穫一些不同的技術經驗與創新靈感。
#歡迎大家參與7月21日,晚上20:00【T·TALK】第12期技術分享活動
掃描海報下方二維碼預約觀看
以上是四倍提速,位元組跳動開源高性能訓練推理引擎LightSeq技術揭秘的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

本站6月27日訊息,剪映是由位元組跳動旗下臉萌科技開發的一款影片剪輯軟體,依託於抖音平台且基本面向該平台用戶製作短影片內容,並相容於iOS、安卓、Windows 、MacOS等作業系統。剪映官方宣布會員體系升級,推出全新SVIP,包含多種AI黑科技,例如智慧翻譯、智慧劃重點、智慧包裝、數位人合成等。價格方面,剪映SVIP月費79元,年費599元(本站註:折合每月49.9元),連續包月則為59元每月,連續包年為499元每年(折合每月41.6元) 。此外,剪映官方也表示,為提升用戶體驗,向已訂閱了原版VIP

透過將檢索增強生成和語意記憶納入AI編碼助手,提升開發人員的生產力、效率和準確性。譯自EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG,作者JanakiramMSV。雖然基本AI程式設計助理自然有幫助,但由於依賴對軟體語言和編寫軟體最常見模式的整體理解,因此常常無法提供最相關和正確的程式碼建議。這些編碼助手產生的代碼適合解決他們負責解決的問題,但通常不符合各個團隊的編碼標準、慣例和風格。這通常會導致需要修改或完善其建議,以便將程式碼接受到應

想了解更多AIGC的內容,請造訪:51CTOAI.x社群https://www.51cto.com/aigc/譯者|晶顏審校|重樓不同於網路上隨處可見的傳統問題庫,這些問題需要跳脫常規思維。大語言模型(LLM)在數據科學、生成式人工智慧(GenAI)和人工智慧領域越來越重要。這些複雜的演算法提升了人類的技能,並在許多產業中推動了效率和創新性的提升,成為企業保持競爭力的關鍵。 LLM的應用範圍非常廣泛,它可以用於自然語言處理、文字生成、語音辨識和推薦系統等領域。透過學習大量的數據,LLM能夠產生文本

大型語言模型(LLM)是在龐大的文字資料庫上訓練的,在那裡它們獲得了大量的實際知識。這些知識嵌入到它們的參數中,然後可以在需要時使用。這些模型的知識在訓練結束時被「具體化」。在預訓練結束時,模型實際上停止學習。對模型進行對齊或進行指令調優,讓模型學習如何充分利用這些知識,以及如何更自然地回應使用者的問題。但是有時模型知識是不夠的,儘管模型可以透過RAG存取外部內容,但透過微調使用模型適應新的領域被認為是有益的。這種微調是使用人工標註者或其他llm創建的輸入進行的,模型會遇到額外的實際知識並將其整合

編輯|ScienceAI問答(QA)資料集在推動自然語言處理(NLP)研究中發揮著至關重要的作用。高品質QA資料集不僅可以用於微調模型,也可以有效評估大語言模型(LLM)的能力,尤其是針對科學知識的理解和推理能力。儘管目前已有許多科學QA數據集,涵蓋了醫學、化學、生物等領域,但這些數據集仍有一些不足之處。其一,資料形式較為單一,大多數為多項選擇題(multiple-choicequestions),它們易於進行評估,但限制了模型的答案選擇範圍,無法充分測試模型的科學問題解答能力。相比之下,開放式問答

6月13日消息,根據字節旗下「火山引擎」公眾號介紹,小米旗下人工智慧助理「小愛同學」與火山引擎達成合作,雙方基於豆包大模型實現更智慧的AI互動體驗。據悉,位元組跳動打造的豆包大模型,每日能夠高效處理數量多達1200億個的文本tokens、生成3000萬張內容。小米借助豆包大模型提升自身模型的學習與推理能力,打造出全新的“小愛同學”,不僅更加精準地把握用戶需求,還以更快的響應速度和更全面的內容服務。例如,當使用者詢問複雜的科學概念時,&ldq

Seed-TTS是位元組跳動豆包大模型團隊近期發布的語音生成大模型成果。 ,它產生的語音幾乎與真人**無異**,連發音**缺陷**也能生成出來,尤其在學習模仿人類說話方面,**逼真度**和**流暢度**均有**出色**表現。舉例來說,將一段語音提供給Seed-TTS,它就能按文字產生全新語音,且帶上原始素材的聲音特徵。原文(Prompt):Seed-TTS產生的中文語音:突然,身邊一陣笑聲。我看著他們,意氣風發地挺直了胸膛,甩了甩那稍顯肉感的雙臂,輕笑道:「我身上的肉,是為了掩飾我爆棚的魅力,否則

本站8月1日消息,SK海力士今天(8月1日)發布博文,宣布將出席8月6日至8日,在美國加州聖克拉拉舉行的全球半導體記憶體峰會FMS2024,展示諸多新一代產品。未來記憶體和儲存高峰會(FutureMemoryandStorage)簡介前身是主要面向NAND供應商的快閃記憶體高峰會(FlashMemorySummit),在人工智慧技術日益受到關注的背景下,今年重新命名為未來記憶體和儲存高峰會(FutureMemoryandStorage),以邀請DRAM和儲存供應商等更多參與者。新產品SK海力士去年在
