Python實作二元樹
Python實作二元樹可以使用物件導向程式設計的方式,透過定義二元樹節點類別來實現。每個節點包含一個資料元素、左右子節點指標和一些操作方法,如插入節點、尋找節點、刪除節點等。
以下是一個簡單的二元樹實作範例:
class Node: def __init__(self, data): self.data = data self.left = None self.right = None def insert(self, data): if self.data: if data < self.data: if self.left is None: self.left = Node(data) else: self.left.insert(data) elif data > self.data: if self.right is None: self.right = Node(data) else: self.right.insert(data) else: self.data = data def find(self, data): if data < self.data: if self.left is None: return str(data) + " Not Found" return self.left.find(data) elif data > self.data: if self.right is None: return str(data) + " Not Found" return self.right.find(data) else: return str(self.data) + " is found" def inorder_traversal(self, root): res = [] if root: res = self.inorder_traversal(root.left) res.append(root.data) res = res + self.inorder_traversal(root.right) return res
在上述程式碼中,Node類別定義了一個節點,包含資料元素data,以及左右子節點指標left和right。 insert方法用於在二元樹中插入節點,find方法用於尋找二元樹中是否存在特定節點,inorder_traversal方法用於對二元樹進行中序遍歷。
下面是如何使用這個Node類別來建立一個二元樹:
root = Node(50) root.insert(30) root.insert(20) root.insert(40) root.insert(70) root.insert(60) root.insert(80) # 查找节点 print(root.find(70)) # Output: 70 is found print(root.find(90)) # Output: 90 Not Found # 中序遍历 print(root.inorder_traversal(root)) # Output: [20, 30, 40, 50, 60, 70, 80]
在上述程式碼中,首先建立了一個根節點root,然後使用insert方法向樹插入節點,最後使用find方法尋找節點並使用inorder_traversal方法對二元樹進行中序遍歷。
除了插入、尋找和遍歷方法,二元樹還有其他的操作方法,如刪除節點、判斷是否為二元搜尋樹、計算樹的深度等。下面是一個稍微完整一些的二元樹範例程式碼:
class Node: def __init__(self, data): self.data = data self.left = None self.right = None def insert(self, data): if self.data: if data < self.data: if self.left is None: self.left = Node(data) else: self.left.insert(data) elif data > self.data: if self.right is None: self.right = Node(data) else: self.right.insert(data) else: self.data = data def find(self, data): if data < self.data: if self.left is None: return None return self.left.find(data) elif data > self.data: if self.right is None: return None return self.right.find(data) else: return self def delete(self, data): if self is None: return self if data < self.data: self.left = self.left.delete(data) elif data > self.data: self.right = self.right.delete(data) else: if self.left is None: temp = self.right self = None return temp elif self.right is None: temp = self.left self = None return temp temp = self.right.minimum() self.data = temp.data self.right = self.right.delete(temp.data) return self def minimum(self): if self.left is None: return self return self.left.minimum() def is_bst(self): if self.left: if self.left.data > self.data or not self.left.is_bst(): return False if self.right: if self.right.data < self.data or not self.right.is_bst(): return False return True def height(self, node): if node is None: return 0 left_height = self.height(node.left) right_height = self.height(node.right) return max(left_height, right_height) + 1 def inorder_traversal(self, root): res = [] if root: res = self.inorder_traversal(root.left) res.append(root.data) res = res + self.inorder_traversal(root.right) return res
在這個範例中,我們新增了delete方法來刪除指定的節點;minimum方法來尋找樹中的最小節點;is_bst方法來判斷當前樹是否為二元搜尋樹;height方法來計算樹的深度。
我們可以用以下程式碼來測試新增的方法:
# 创建二叉树 root = Node(50) root.insert(30) root.insert(20) root.insert(40) root.insert(70) root.insert(60) root.insert(80) # 删除节点 print("Deleting node 20:") root.delete(20) print(root.inorder_traversal(root)) # 判断是否为二叉搜索树 print("Is it a BST?:", root.is_bst()) # 计算树的深度 print("Tree height:", root.height(root))
這樣我們就完成了一個比較完整的二叉樹的實現,同時也示範如何在Python中使用物件導向編程思想來實作一個資料結構。
最後附上完整的二元樹類別實作程式碼:
class Node: def __init__(self, data): self.data = data self.left = None self.right = None def insert(self, data): if self.data: if data < self.data: if self.left is None: self.left = Node(data) else: self.left.insert(data) elif data > self.data: if self.right is None: self.right = Node(data) else: self.right.insert(data) else: self.data = data def find(self, data): if data < self.data: if self.left is None: return None return self.left.find(data) elif data > self.data: if self.right is None: return None return self.right.find(data) else: return self def delete(self, data): if self is None: return self if data < self.data: self.left = self.left.delete(data) elif data > self.data: self.right = self.right.delete(data) else: if self.left is None: temp = self.right self = None return temp elif self.right is None: temp = self.left self = None return temp temp = self.right.minimum() self.data = temp.data self.right = self.right.delete(temp.data) return self def minimum(self): if self.left is None: return self return self.left.minimum() def is_bst(self): if self.left: if self.left.data > self.data or not self.left.is_bst(): return False if self.right: if self.right.data < self.data or not self.right.is_bst(): return False return True def height(self, node): if node is None: return 0 left_height = self.height(node.left) right_height = self.height(node.right) return max(left_height, right_height) + 1 def inorder_traversal(self, root): res = [] if root: res = self.inorder_traversal(root.left) res.append(root.data) res = res + self.inorder_traversal(root.right) return res if __name__ == '__main__': # 创建二叉树 root = Node(50) root.insert(30) root.insert(20) root.insert(40) root.insert(70) root.insert(60) root.insert(80) # 删除节点 print("Deleting node 20:") root.delete(20) print(root.inorder_traversal(root)) # 判断是否为二叉搜索树 print("Is it a BST?:", root.is_bst()) # 计算树的深度 print("Tree height:", root.height(root))
#在執行程式碼後,可以得到以下輸出:
Deleting node 20 :
[30, 40, 50, 60, 70, 80]
Is it a BST?: True
Tree height: 3
#這個範例包含了插入、查找、刪除、遍歷、判斷是否為二元搜尋樹和計算樹的深度等。
以上是Python二元樹怎麼實現的詳細內容。更多資訊請關注PHP中文網其他相關文章!