目錄
引言
pd.MultiIndex.from_arrays()
pd.MultiIndex.from_tuples()
清單和元組是可以混合使用的
首頁 後端開發 Python教學 如何使用Python的pandas庫建立多層次索引(MultiIndex)?

如何使用Python的pandas庫建立多層次索引(MultiIndex)?

May 07, 2023 pm 02:55 PM
python pandas multiindex

引言

pd.MultiIndex,即具有多個層次的索引。透過多層次索引,我們就可以操作整個索引組的資料。本文主要介紹在Pandas中建立多層索引的6種方式:

  • pd.MultiIndex.from_arrays():多維數組作為參數,高維度指定高層索引,低維指定低層索引。

  • pd.MultiIndex.from_tuples():元組的清單作為參數,每個元組指定每個索引(高維和低維索引)。

  • pd.MultiIndex.from_product():可迭代物件的列表作為參數,根據多個可迭代物件元素的笛卡爾積(元素間的兩兩組合)進行創建索引。

  • pd.MultiIndex.from_frame:根據現有的資料框來直接產生

  • groupby():透過資料分組統計量得到

  • pivot_table():產生透視表的方式來得到

pd.MultiIndex.from_arrays()

In [1] :

import pandas as pd
import numpy as np
登入後複製

透過陣列的方式來生成,通常指定的是清單中的元素:

In [2]:

# 列表元素是字符串和数字
array1 = [["xiaoming","guanyu","zhangfei"], 
          [22,25,27]
         ]
m1 = pd.MultiIndex.from_arrays(array1)
m1
登入後複製

Out[2]:

MultiIndex([('xiaoming', 22),            (  'guanyu', 25),            ('zhangfei', 27)],
           )
登入後複製
登入後複製

In [3]:

type(m1)  # 查看数据类型
登入後複製

透過type函數來查看資料類型,發現的確是:MultiIndex

Out[3]:

pandas.core.indexes.multi.MultiIndex
登入後複製

在建立的同時可以指定每個層級的名字:

In [4]:

# 列表元素全是字符串
array2 = [["xiaoming","guanyu","zhangfei"],
          ["male","male","female"]
         ]
m2 = pd.MultiIndex.from_arrays(
	array2, 
  # 指定姓名和性别
  names=["name","sex"])
m2
登入後複製

Out[4]:

MultiIndex([('xiaoming',   'male'),            (  'guanyu',   'male'),            ('zhangfei', 'female')],
           names=['name', 'sex'])
登入後複製

下面的範例是產生3個層次的索引且指定名字:

In [5]:

array3 = [["xiaoming","guanyu","zhangfei"],
          ["male","male","female"],
          [22,25,27]
         ]
m3 = pd.MultiIndex.from_arrays(
	array3, 
	names=["姓名","性别","年龄"])
m3
登入後複製

Out[5]:

MultiIndex([('xiaoming',   'male', 22),            (  'guanyu',   'male', 25),            ('zhangfei', 'female', 27)],
           names=['姓名', '性别', '年龄'])
登入後複製

pd.MultiIndex.from_tuples()

透過元組的形式來產生多層索引:

In [6]:

# 元组的形式
array4 = (("xiaoming","guanyu","zhangfei"), 
          (22,25,27)
         )
m4 = pd.MultiIndex.from_arrays(array4)
m4
登入後複製

Out[6]:

MultiIndex([('xiaoming', 22),            (  'guanyu', 25),            ('zhangfei', 27)],
           )
登入後複製
登入後複製

In [7]:

# 元组构成的3层索引
array5 = (("xiaoming","guanyu","zhangfei"),
          ("male","male","female"),
          (22,25,27))
m5 = pd.MultiIndex.from_arrays(array5)
m5
登入後複製

Out [7]:

MultiIndex([('xiaoming',   'male', 22),            (  'guanyu',   'male', 25),            ('zhangfei', 'female', 27)],
           )
登入後複製

清單和元組是可以混合使用的

  • #最外層是列表

  • ##裡面全部是元組

In [8]:

array6 = [("xiaoming","guanyu","zhangfei"),
          ("male","male","female"),
          (18,35,27)
         ]
# 指定名字
m6 = pd.MultiIndex.from_arrays(array6,names=["姓名","性别","年龄"])
m6
登入後複製

Out[8]:

MultiIndex([('xiaoming',   'male', 18),            (  'guanyu',   'male', 35),            ('zhangfei', 'female', 27)],
           names=['姓名', '性别', '年龄'] # 指定名字
           )
登入後複製

pd.MultiIndex.from_product()

使用可迭代物件的列表作為參數,根據多個可迭代物件元素的笛卡爾積(元素間的兩兩組合)進行建立索引。

在Python中,我們使用

isinstance()函數來判斷python物件是否可迭代:

# 导入 collections 模块的 Iterable 对比对象
from collections import Iterable
登入後複製

如何使用Python的pandas庫建立多層次索引(MultiIndex)?

如何使用Python的pandas庫建立多層次索引(MultiIndex)?

#透過上面的例子我們總結:常見的字串、列表、集合、元組、字典都是可迭代物件

下面舉例來說明:

In [18 ]:

names = ["xiaoming","guanyu","zhangfei"]
numbers = [22,25]
m7 = pd.MultiIndex.from_product(
    [names, numbers], 
    names=["name","number"]) # 指定名字
m7
登入後複製

Out[18]:

MultiIndex([('xiaoming', 22),            ('xiaoming', 25),            (  'guanyu', 22),            (  'guanyu', 25),            ('zhangfei', 22),            ('zhangfei', 25)],
           names=['name', 'number'])
登入後複製

In [19]:

# 需要展开成列表形式
strings = list("abc") 
lists = [1,2]
m8 = pd.MultiIndex.from_product(
	[strings, lists],
	names=["alpha","number"])
m8
登入後複製

Out[19]:

MultiIndex([('a', 1),            ('a', 2),            ('b', 1),            ('b', 2),            ('c', 1),            ('c', 2)],
           names=['alpha', 'number'])
登入後複製
登入後複製

In [20]:

# 使用元组形式
strings = ("a","b","c") 
lists = [1,2]
m9 = pd.MultiIndex.from_product(
	[strings, lists],
	names=["alpha","number"])
m9
登入後複製

Out[20]:

MultiIndex([('a', 1),            ('a', 2),            ('b', 1),            ('b', 2),            ('c', 1),            ('c', 2)],
           names=['alpha', 'number'])
登入後複製
登入後複製

In [21]:

# 使用range函数
strings = ("a","b","c")  # 3个元素
lists = range(3)  # 0,1,2  3个元素
m10 = pd.MultiIndex.from_product(
	[strings, lists],
	names=["alpha","number"])
m10
登入後複製

Out[21]:

MultiIndex([('a', 0),            ('a', 1),            ('a', 2),            ('b', 0),            ('b', 1),            ('b', 2),            ('c', 0),            ('c', 1),            ('c', 2)],
           names=['alpha', 'number'])
登入後複製

In [22]:

# 使用range函数
strings = ("a","b","c") 
list1 = range(3)  # 0,1,2
list2 = ["x","y"]
m11 = pd.MultiIndex.from_product(
	[strings, list1, list2],
  names=["name","l1","l2"]
  )
m11  # 总个数 3*3*2=18
登入後複製

總個數是``332=18`個:

Out[22]:

MultiIndex([('a', 0, 'x'),            ('a', 0, 'y'),            ('a', 1, 'x'),            ('a', 1, 'y'),            ('a', 2, 'x'),            ('a', 2, 'y'),            ('b', 0, 'x'),            ('b', 0, 'y'),            ('b', 1, 'x'),            ('b', 1, 'y'),            ('b', 2, 'x'),            ('b', 2, 'y'),            ('c', 0, 'x'),            ('c', 0, 'y'),            ('c', 1, 'x'),            ('c', 1, 'y'),            ('c', 2, 'x'),            ('c', 2, 'y')],
           names=['name', 'l1', 'l2'])
登入後複製

pd.MultiIndex.from_frame()

透過現有的DataFrame直接來產生多層索引:

df = pd.DataFrame({"name":["xiaoming","guanyu","zhaoyun"],
                  "age":[23,39,34],
                  "sex":["male","male","female"]})
df
登入後複製

如何使用Python的pandas庫建立多層次索引(MultiIndex)?

直接產生了多層索引,名稱就是現有資料框的列欄位:

In [24]:

pd.MultiIndex.from_frame(df)
登入後複製

Out[24]:

MultiIndex([('xiaoming', 23,   'male'),            (  'guanyu', 39,   'male'),            ( 'zhaoyun', 34, 'female')],
           names=['name', 'age', 'sex'])
登入後複製

透過names參數指定名稱:

In [25]:

# 可以自定义名字
pd.MultiIndex.from_frame(df,names=["col1","col2","col3"])
登入後複製

#Out[ 25]:

MultiIndex([('xiaoming', 23,   'male'),            (  'guanyu', 39,   'male'),            ( 'zhaoyun', 34, 'female')],
           names=['col1', 'col2', 'col3'])
登入後複製

groupby()

透過groupby函數的分組功能計算得到:

#In [26]:

df1 = pd.DataFrame({"col1":list("ababbc"),
                   "col2":list("xxyyzz"),
                   "number1":range(90,96),
                   "number2":range(100,106)})
df1
登入後複製

Out[26] :

如何使用Python的pandas庫建立多層次索引(MultiIndex)?

df2 = df1.groupby(["col1","col2"]).agg({"number1":sum,
                                        "number2":np.mean})
df2
登入後複製

如何使用Python的pandas庫建立多層次索引(MultiIndex)?

查看資料的索引:

#In [28]:

df2.index
登入後複製

Out [28]:

MultiIndex([('a', 'x'),            ('a', 'y'),            ('b', 'x'),            ('b', 'y'),            ('b', 'z'),            ('c', 'z')],
           names=['col1', 'col2'])
登入後複製
登入後複製

pivot_table()

透過資料透視功能得到:

#In [29]:

df3 = df1.pivot_table(values=["col1","col2"],index=["col1","col2"])
df3
登入後複製

如何使用Python的pandas庫建立多層次索引(MultiIndex)?

#In [30]:

df3.index
登入後複製

Out[30]:

MultiIndex([('a', 'x'),            ('a', 'y'),            ('b', 'x'),            ('b', 'y'),            ('b', 'z'),            ('c', 'z')],
           names=['col1', 'col2'])
登入後複製
登入後複製

以上是如何使用Python的pandas庫建立多層次索引(MultiIndex)?的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

PHP和Python:解釋了不同的範例 PHP和Python:解釋了不同的範例 Apr 18, 2025 am 12:26 AM

PHP主要是過程式編程,但也支持面向對象編程(OOP);Python支持多種範式,包括OOP、函數式和過程式編程。 PHP適合web開發,Python適用於多種應用,如數據分析和機器學習。

在PHP和Python之間進行選擇:指南 在PHP和Python之間進行選擇:指南 Apr 18, 2025 am 12:24 AM

PHP適合網頁開發和快速原型開發,Python適用於數據科學和機器學習。 1.PHP用於動態網頁開發,語法簡單,適合快速開發。 2.Python語法簡潔,適用於多領域,庫生態系統強大。

Python vs. JavaScript:學習曲線和易用性 Python vs. JavaScript:學習曲線和易用性 Apr 16, 2025 am 12:12 AM

Python更適合初學者,學習曲線平緩,語法簡潔;JavaScript適合前端開發,學習曲線較陡,語法靈活。 1.Python語法直觀,適用於數據科學和後端開發。 2.JavaScript靈活,廣泛用於前端和服務器端編程。

PHP和Python:深入了解他們的歷史 PHP和Python:深入了解他們的歷史 Apr 18, 2025 am 12:25 AM

PHP起源於1994年,由RasmusLerdorf開發,最初用於跟踪網站訪問者,逐漸演變為服務器端腳本語言,廣泛應用於網頁開發。 Python由GuidovanRossum於1980年代末開發,1991年首次發布,強調代碼可讀性和簡潔性,適用於科學計算、數據分析等領域。

vs code 可以在 Windows 8 中運行嗎 vs code 可以在 Windows 8 中運行嗎 Apr 15, 2025 pm 07:24 PM

VS Code可以在Windows 8上運行,但體驗可能不佳。首先確保系統已更新到最新補丁,然後下載與系統架構匹配的VS Code安裝包,按照提示安裝。安裝後,注意某些擴展程序可能與Windows 8不兼容,需要尋找替代擴展或在虛擬機中使用更新的Windows系統。安裝必要的擴展,檢查是否正常工作。儘管VS Code在Windows 8上可行,但建議升級到更新的Windows系統以獲得更好的開發體驗和安全保障。

visual studio code 可以用於 python 嗎 visual studio code 可以用於 python 嗎 Apr 15, 2025 pm 08:18 PM

VS Code 可用於編寫 Python,並提供許多功能,使其成為開發 Python 應用程序的理想工具。它允許用戶:安裝 Python 擴展,以獲得代碼補全、語法高亮和調試等功能。使用調試器逐步跟踪代碼,查找和修復錯誤。集成 Git,進行版本控制。使用代碼格式化工具,保持代碼一致性。使用 Linting 工具,提前發現潛在問題。

notepad 怎麼運行python notepad 怎麼運行python Apr 16, 2025 pm 07:33 PM

在 Notepad 中運行 Python 代碼需要安裝 Python 可執行文件和 NppExec 插件。安裝 Python 並為其添加 PATH 後,在 NppExec 插件中配置命令為“python”、參數為“{CURRENT_DIRECTORY}{FILE_NAME}”,即可在 Notepad 中通過快捷鍵“F6”運行 Python 代碼。

vscode 擴展是否是惡意的 vscode 擴展是否是惡意的 Apr 15, 2025 pm 07:57 PM

VS Code 擴展存在惡意風險,例如隱藏惡意代碼、利用漏洞、偽裝成合法擴展。識別惡意擴展的方法包括:檢查發布者、閱讀評論、檢查代碼、謹慎安裝。安全措施還包括:安全意識、良好習慣、定期更新和殺毒軟件。

See all articles