首頁 > 後端開發 > Python教學 > 如何使用Python實作PSO演算法解決TSP問題?

如何使用Python實作PSO演算法解決TSP問題?

PHPz
發布: 2023-05-08 08:34:07
轉載
2289 人瀏覽過

PSO演算法

那麼開始之前,我們還是來聊聊基本的PSO演算法。核心就一個:

如何使用Python實作PSO演算法解決TSP問題?

如何使用Python實作PSO演算法解決TSP問題?

來我們來解釋這個公式,你就懂了。

老規矩我們假設有一個方程式y=sin(x1) cos(x2)

PSO演算法透過模擬鳥類遷移來實現咱們的最佳化,這個怎麼來的,就不說了,就說說這個核心。

我們剛剛的方程式當中,有兩個變量,x1,x2。由於是模擬鳥兒,所有為了實現瞎蒙大法,這裡引入了速度的概念,x自然就是咱們的可行域,也就是解的空間。透過改變速度,來讓x進行移動,也就是改變x的值。其中Pbest,表示這個鳥自己走過的位置裡面最優的解,Gbest表示整個族群的最優解。什麼意思,也就是說隨著移動,這個鳥可能會走到更差的位置,因為和遺傳不一樣,他是不好的就乾掉了,而這個不會。當然這裡面涉及到很多局部問題,咱們這裡都不討論,沒有哪一個演算法是完美的,這個就對了。

演算法流程

演算法的主要流程:

第一步:對粒子群的隨機位置和速度進行初始設定,同時設定迭代次數。

第二步:計算每個粒子的適應度值。

第三步:對每個粒子,將其適應度值與所經歷的最佳位置pbest i的適應度值進行比較,若較好,則將其作為當前的個體最優位置。

第四步:對每個粒子,將其適應度值與全局所經歷的最佳位置gbestg的適應度值進行比較,若較好,則將其作為當前的全局最優位置。

第五步:根據速度、位置公式對粒子的速度和位置進行最佳化,從而更新粒子位置。

第六步:如未達到結束條件(通常為最大循環數或最小誤差需求),則傳回第二步驟

如何使用Python實作PSO演算法解決TSP問題?

##優點:

PSO演算法沒有交叉和變異運算,依靠粒子速度完成搜索,並且在迭代進化中只有最優的粒子把資訊傳遞給其它粒子,搜索速度快。

PSO演算法具有記憶性,粒子群體的歷史最佳位置可以記憶並傳遞給其它粒子。

需調整的參數較少,結構簡單,容易工程實作。

採用實數編碼,直接由問題的解定,問題解的變數數直接作為粒子的維數。

缺點:

缺乏速度的動態調節,容易陷入局部最優,導致收斂精度低且不易收斂。

不能有效解決離散及組合最佳化問題。

參數控制,對於不同的問題,如何選擇合適的參數來達到最佳效果。

不能有效地解一些非直角座標系描述問題,

簡單實作

ok,我們來看一下最簡單的實作:

import numpy as np
import random
class PSO_model:
    def __init__(self,w,c1,c2,r1,r2,N,D,M):
        self.w = w # 惯性权值
        self.c1=c1
        self.c2=c2
        self.r1=r1
        self.r2=r2
        self.N=N # 初始化种群数量个数
        self.D=D # 搜索空间维度
        self.M=M # 迭代的最大次数
        self.x=np.zeros((self.N,self.D))  #粒子的初始位置
        self.v=np.zeros((self.N,self.D))  #粒子的初始速度
        self.pbest=np.zeros((self.N,self.D))  #个体最优值初始化
        self.gbest=np.zeros((1,self.D))  #种群最优值
        self.p_fit=np.zeros(self.N)
        self.fit=1e8 #初始化全局最优适应度
# 目标函数,也是适应度函数(求最小化问题)
    def function(self,x):
        A = 10
        x1=x[0]
        x2=x[1]
        Z = 2 * A + x1 ** 2 - A * np.cos(2 * np.pi * x1) + x2 ** 2 - A * np.cos(2 * np.pi * x2)
        return Z
     # 初始化种群
    def init_pop(self):
        for i in range(self.N):
            for j in range(self.D):
                self.x[i][j] = random.random()
                self.v[i][j] = random.random()
            self.pbest[i] = self.x[i] # 初始化个体的最优值
            aim=self.function(self.x[i]) # 计算个体的适应度值
            self.p_fit[i]=aim # 初始化个体的最优位置
            if aim < self.fit:  # 对个体适应度进行比较,计算出最优的种群适应度
                self.fit = aim
                self.gbest = self.x[i]
    # 更新粒子的位置与速度
    def update(self):
        for t in range(self.M): # 在迭代次数M内进行循环
            for i in range(self.N): # 对所有种群进行一次循环
                aim=self.function(self.x[i]) # 计算一次目标函数的适应度
                if aim<self.p_fit[i]: # 比较适应度大小,将小的负值给个体最优
                    self.p_fit[i]=aim
                    self.pbest[i]=self.x[i]
                    if self.p_fit[i]<self.fit: # 如果是个体最优再将和全体最优进行对比
                        self.gbest=self.x[i]
                        self.fit = self.p_fit[i]
            for i in range(self.N): # 更新粒子的速度和位置
                self.v[i]=self.w*self.v[i]+self.c1*self.r1*(self.pbest[i]-self.x[i])+ self.c2*self.r2*(self.gbest-self.x[i])
                self.x[i]=self.x[i]+self.v[i]
        print("最优值:",self.fit,"位置为:",self.gbest)
if __name__ == &#39;__main__&#39;:
    # w,c1,c2,r1,r2,N,D,M参数初始化
    w=random.random()
    c1=c2=2#一般设置为2
    r1=0.7
    r2=0.5
    N=30
    D=2
    M=200
    pso_object=PSO_model(w,c1,c2,r1,r2,N,D,M)#设置初始权值
    pso_object.init_pop()
    pso_object.update()
登入後複製

解決TSP

資料表示

首先這個使用PSO的話,其實是和我們的這個先前使用遺傳是類似的,我們依然透過一個矩陣表示族群,一個矩陣表示城市之間的距離。

      # 群体的初始化和路径的初始化
        self.population = np.array([0] * self.num_pop * self.num).reshape(
            self.num_pop, self.num)
        self.fitness = [0] * self.num_pop
        """
        计算城市的距离,我们用矩阵表示城市间的距离
        """
        self.__matrix_distance = self.__matrix_dis()
登入後複製

區別

和我們原來的PSO的最大區別是啥呢,其實和簡單,在與我們速度的更新。我們在連續問題的時候其實是這樣的:

如何使用Python實作PSO演算法解決TSP問題?

同樣的我們可以把X表示城市的編號,但是顯然我們不能使用這種方案進行速度的更新。

那麼這個時候,我們對於速度的更新的話,我們是需要使用到一種新的方案,那麼這個方案的話其實就是套用遺傳算演算法的X更新。我們之所以需要速度說白了就是為了更新X,讓X往好的方向進行瞎蒙。現在單純使用速度更新是不行了,那麼反正都是更新X,選擇一個可以很好更新這個X的方案不就行了嘛。所以的話這裡可直接使用遺傳啊,我們的速度更新是參考Pbest和Gbest,之後按照一定的權重進行「學習」這樣一來這個V就具備了Pbest和Gbest的一種「特徵」。所以既然如此,那麼我直接仿造遺傳交叉的時候和Best進行交叉不就可以學習到一些對應的「特徵」嘛。

    def cross_1(self, path, best_path):
        r1 = np.random.randint(self.num)
        r2 = np.random.randint(self.num)
        while r2 == r1:
            r2 = np.random.randint(self.num)
        left, right = min(r1, r2), max(r1, r2)
        cross = best_path[left:right + 1]
        for i in range(right - left + 1):
            for k in range(self.num):
                if path[k] == cross[i]:
                    path[k:self.num - 1] = path[k + 1:self.num]
                    path[-1] = 0
        path[self.num - right + left - 1:self.num] = cross
        return path
登入後複製

同時我們依然可以引入變異。

    def mutation(self,path):
        r1 = np.random.randint(self.num)
        r2 = np.random.randint(self.num)
        while r2 == r1:
            r2 = np.random.randint(self.num)
        path[r1],path[r2] = path[r2],path[r1]
        return path
登入後複製

完整程式碼

ok,現在我們來看到完整的程式碼:

import numpy as np
import matplotlib.pyplot as plt
class HybridPsoTSP(object):
    def __init__(self ,data ,num_pop=200):
        self.num_pop = num_pop  # 群体个数
        self.data = data        # 城市坐标
        self.num =len(data)     # 城市个数
        # 群体的初始化和路径的初始化
        self.population = np.array([0] * self.num_pop * self.num).reshape(
            self.num_pop, self.num)
        self.fitness = [0] * self.num_pop
        """
        计算城市的距离,我们用矩阵表示城市间的距离
        """
        self.__matrix_distance = self.__matrix_dis()
    def __matrix_dis(self):
        """
        计算14个城市的距离,将这些距离用矩阵存起来
        :return:
        """
        res = np.zeros((self.num, self.num))
        for i in range(self.num):
            for j in range(i + 1, self.num):
                res[i, j] = np.linalg.norm(self.data[i, :] - self.data[j, :])
                res[j, i] = res[i, j]
        return res
    def cross_1(self, path, best_path):
        r1 = np.random.randint(self.num)
        r2 = np.random.randint(self.num)
        while r2 == r1:
            r2 = np.random.randint(self.num)
        left, right = min(r1, r2), max(r1, r2)
        cross = best_path[left:right + 1]
        for i in range(right - left + 1):
            for k in range(self.num):
                if path[k] == cross[i]:
                    path[k:self.num - 1] = path[k + 1:self.num]
                    path[-1] = 0
        path[self.num - right + left - 1:self.num] = cross
        return path
    def mutation(self,path):
        r1 = np.random.randint(self.num)
        r2 = np.random.randint(self.num)
        while r2 == r1:
            r2 = np.random.randint(self.num)
        path[r1],path[r2] = path[r2],path[r1]
        return path
    def comp_fit(self, one_path):
        """
        计算,咱们这个路径的长度,例如A-B-C-D
        :param one_path:
        :return:
        """
        res = 0
        for i in range(self.num - 1):
            res += self.__matrix_distance[one_path[i], one_path[i + 1]]
        res += self.__matrix_distance[one_path[-1], one_path[0]]
        return res
    def out_path(self, one_path):
        """
        输出我们的路径顺序
        :param one_path:
        :return:
        """
        res = str(one_path[0] + 1) + '-->'
        for i in range(1, self.num):
            res += str(one_path[i] + 1) + '-->'
        res += str(one_path[0] + 1) + '\n'
        print(res)
    def init_population(self):
        """
        初始化种群
        :return:
        """
        rand_ch = np.array(range(self.num))
        for i in range(self.num_pop):
            np.random.shuffle(rand_ch)
            self.population[i, :] = rand_ch
            self.fitness[i] = self.comp_fit(rand_ch)
def main(data, max_n=200, num_pop=200):
    Path_short = HybridPsoTSP(data, num_pop=num_pop)  # 混合粒子群算法类
    Path_short.init_population()  # 初始化种群
    # 初始化路径绘图
    fig, ax = plt.subplots()
    x = data[:, 0]
    y = data[:, 1]
    ax.scatter(x, y, linewidths=0.1)
    for i, txt in enumerate(range(1, len(data) + 1)):
        ax.annotate(txt, (x[i], y[i]))
    res0 = Path_short.population[0]
    x0 = x[res0]
    y0 = y[res0]
    for i in range(len(data) - 1):
        plt.quiver(x0[i], y0[i], x0[i + 1] - x0[i], y0[i + 1] - y0[i], color='r', width=0.005, angles='xy', scale=1,
                   scale_units='xy')
    plt.quiver(x0[-1], y0[-1], x0[0] - x0[-1], y0[0] - y0[-1], color='r', width=0.005, angles='xy', scale=1,
               scale_units='xy')
    plt.show()
    print('初始染色体的路程: ' + str(Path_short.fitness[0]))
    # 存储个体极值的路径和距离
    best_P_population = Path_short.population.copy()
    best_P_fit = Path_short.fitness.copy()
    min_index = np.argmin(Path_short.fitness)
    # 存储当前种群极值的路径和距离
    best_G_population = Path_short.population[min_index, :]
    best_G_fit = Path_short.fitness[min_index]
    # 存储每一步迭代后的最优路径和距离
    best_population = [best_G_population]
    best_fit = [best_G_fit]
    # 复制当前群体进行交叉变异
    x_new = Path_short.population.copy()
    for i in range(max_n):
        # 更新当前的个体极值
        for j in range(num_pop):
            if Path_short.fitness[j] < best_P_fit[j]:
                best_P_fit[j] = Path_short.fitness[j]
                best_P_population[j, :] = Path_short.population[j, :]
        # 更新当前种群的群体极值
        min_index = np.argmin(Path_short.fitness)
        best_G_population = Path_short.population[min_index, :]
        best_G_fit = Path_short.fitness[min_index]
        # 更新每一步迭代后的全局最优路径和解
        if best_G_fit < best_fit[-1]:
            best_fit.append(best_G_fit)
            best_population.append(best_G_population)
        else:
            best_fit.append(best_fit[-1])
            best_population.append(best_population[-1])
        # 将每个个体与个体极值和当前的群体极值进行交叉
        for j in range(num_pop):
            # 与个体极值交叉
            x_new[j, :] = Path_short.cross_1(x_new[j, :], best_P_population[j, :])
            fit = Path_short.comp_fit(x_new[j, :])
            # 判断是否保留
            if fit < Path_short.fitness[j]:
                Path_short.population[j, :] = x_new[j, :]
                Path_short.fitness[j] = fit
            # 与当前极值交叉
            x_new[j, :] = Path_short.cross_1(x_new[j, :], best_G_population)
            fit = Path_short.comp_fit(x_new[j, :])
            if fit < Path_short.fitness[j]:
                Path_short.population[j, :] = x_new[j, :]
                Path_short.fitness[j] = fit
            # 变异
            x_new[j, :] = Path_short.mutation(x_new[j, :])
            fit = Path_short.comp_fit(x_new[j, :])
            if fit <= Path_short.fitness[j]:
                Path_short.population[j] = x_new[j, :]
                Path_short.fitness[j] = fit
        if (i + 1) % 20 == 0:
            print('第' + str(i + 1) + '步后的最短的路程: ' + str(Path_short.fitness[min_index]))
            print('第' + str(i + 1) + '步后的最优路径:')
            Path_short.out_path(Path_short.population[min_index, :])  # 显示每一步的最优路径
    Path_short.best_population = best_population
    Path_short.best_fit = best_fit
    return Path_short  # 返回结果类
if __name__ == '__main__':
    data = np.array([16.47, 96.10, 16.47, 94.44, 20.09, 92.54,
                     22.39, 93.37, 25.23, 97.24, 22.00, 96.05, 20.47, 97.02,
                     17.20, 96.29, 16.30, 97.38, 14.05, 98.12, 16.53, 97.38,
                     21.52, 95.59, 19.41, 97.13, 20.09, 92.55]).reshape((14, 2))
    main(data)
登入後複製

初始染色体的路程: 71.30211569672313
第20步后的最短的路程: 29.340520066994223
第20步后的最优路径:
9-->10-->1-->2-->14-->3-->4-->5-->6-->12-->7-->13-->8-->11-->9
第40步后的最短的路程: 29.340520066994223
第40步后的最优路径:
9-->10-->1-->2-->14-->3-->4-->5-->6-->12-->7-->13-->8-->11-->9
第60步后的最短的路程: 29.340520066994223
第60步后的最优路径:
9-->10-->1-->2-->14-->3-->4-->5-->6-->12-->7-->13-->8-->11-->9
第80步后的最短的路程: 29.340520066994223
第80步后的最优路径:
9-->10-->1-->2-->14-->3-->4-->5-->6-->12-->7-->13-->8-->11-->9
第100步后的最短的路程: 29.340520066994223
第100步后的最优路径:
9-->10-->1-->2-->14-->3-->4-->5-->6-->12-->7-->13-->8-->11-->9
第120步后的最短的路程: 29.340520066994223
第120步后的最优路径:
9-->10-->1-->2-->14-->3-->4-->5-->6-->12-->7-->13-->8-->11-->9
第140步后的最短的路程: 29.340520066994223
第140步后的最优路径:
9-->10-->1-->2-->14-->3-->4-->5-->6-->12-->7-->13-->8-->11-->9
第160步后的最短的路程: 29.340520066994223
第160步后的最优路径:
9-->10-->1-->2-->14-->3-->4-->5-->6-->12-->7-->13-->8-->11-->9
第180步后的最短的路程: 29.340520066994223
第180步后的最优路径:
9-->10-->1-->2-->14-->3-->4-->5-->6-->12-->7-->13-->8-->11-->9
第200步后的最短的路程: 29.340520066994223
第200步后的最优路径:
9-->10-->1-->2-->14-->3-->4-->5-->6-->12-->7-->13-->8-->11-->9

可以看到收敛速度还是很快的。

特点分析

ok,到目前为止的话,我们介绍了两个算法去解决TSP或者是优化问题。我们来分析一下,这些算法有什么特点,为啥可以达到我们需要的优化效果。其实不管是遗传还是PSO,你其实都可以发现,有一个东西,我们可以暂且叫它环境压力。我们通过物竞天择,或者鸟类迁移,进行模拟寻优。而之所以需要这样做,是因为我们指定了一个规则,在我们的规则之下。我们让模拟的种群有一种压力去靠拢,其中物竞天择和鸟类迁移只是我们的一种手段,去应对这样的“压力”。所以的对于这种算法而言,最核心的点就两个:

设计环境压力

我们需要做优化问题,所以我们必须要能够让我们的解往那个方向走,需要一个驱动,需要一个压力。因此我们需要设计这样的一个环境,在遗传算法,粒子群算法是通过种群当中的生存,来进行设计的它的压力是我们的目标函数。由种群和目标函数(目标指标)构成了一个环境和压力。

设计压力策略

之后的话,我们设计好了一个环境和压力,那么未来应对这种压力,我们需要去设计一种策略,来应付这种压力。遗传算法是通过PUA自己,也就是种群的优胜略汰。PSO是通过学习,学习种群的优秀粒子和过去自己家的优秀“祖先”来应对这种压力的。

强化学习

所以的话,我们是否可以使用别的方案来实现这种优化效果。,在强化学习的算法框架里面的话,我们明确的知道了为什么他们可以实现优化,是环境压力+压力策略。恰好咱们强化学习是有环境的,适应函数和环境恰好可以组成环境+压力。本身的算法收敛过程就是我们的压力策略。所以我们完全是可以直接使用强化学习进行这个处理的。那么在这里咱们就来使用强化学习在下一篇文章当中。

以上是如何使用Python實作PSO演算法解決TSP問題?的詳細內容。更多資訊請關注PHP中文網其他相關文章!

相關標籤:
來源:yisu.com
本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
熱門教學
更多>
最新下載
更多>
網站特效
網站源碼
網站素材
前端模板