Python如何處理Excel檔案?
「問題說明」
這次要處理的excel有兩個sheet,要根據其中一個sheet的資料來計算另一個sheet的值。造成問題的點在於,要計算值的sheet裡面不只有數值,還有公式。讓我們來看看:
如上圖所示,這個excel一共有兩個sheet:CP和DS,我們要按照一定的業務規則,根據CP中的數據計算DS對應單元格的資料。圖中藍色方框框出來的是帶有公式的,而其他區域是數值。
我們來看看,如果我們照著之前說的處理邏輯,把excel一次批次讀取到dataframe處理,然後再一次批次寫回去有啥問題。這部分程式碼如下:
import pandas as pd import xlwings as xw #要处理的文件路径 fpath = "data/DS_format.xlsm" #把CP和DS两个sheet的数据分别读入pandas的dataframe cp_df = pd.read_excel(fpath,sheet_name="CP",header=[0]) ds_df = pd.read_excel(fpath,sheet_name="DS",header=[0,1]) #计算过程省略...... #保存结果到excel app = xw.App(visible=False,add_book=False) ds_format_workbook = app.books.open(fpath) ds_worksheet = ds_format_workbook.sheets["DS"] ds_worksheet.range("A1").expand().options(index=False).value = ds_df ds_format_workbook.save() ds_format_workbook.close() app.quit()
如上程式碼存在的問題在於,pd.read_excel()方法從excel讀取資料到dataframe的時候,對於有公式的單元格,會直接讀取公式計算的結果(如果沒有結果則回傳Nan),而我們寫入excel的時候是直接把dataframe一次性批次寫回的,這樣之前帶公式的單元格,被寫回的就是計算出來的值或Nan,而丟掉了公式。
好了,問題出現了,我們該如何解決呢?這裡會想到兩個想法:
dataframe寫回excel的時候,不要一次批量寫回,而是透過行和列的迭代,只寫回計算的數據,有公式的單元格不動;
讀取excel的時候,有沒有辦法做到對於有公式的單元格,讀取公式,而不是讀取公式計算的結果;
我確實按照上面兩個想法分別嘗試了一下,我們一起來看一下。
「方案1」
如下程式碼嘗試遍歷dataframe然後按單元格寫入對應的值,有公式的單元格不動
#根据ds_df来写excel,只写该写的单元格 for row_idx,row in ds_df.iterrows(): total_capabity_val = row[('Total','Capabity')].strip() total_capabity1_val = row[('Total','Capabity.1')].strip() #Total和1Gb Eqv.所在的行不写 if total_capabity_val!= 'Total' and total_capabity_val != '1Gb Eqv.': #给Delta和LOI赋值 if total_capabity1_val == 'LOI' or total_capabity1_val == 'Delta': ds_worksheet.range((row_idx + 3 ,3)).value = row[('Current week','BOH')] print(f"ds_sheet的第{row_idx + 3}行第3列被设置为{row[('Current week','BOH')]}") #给Demand和Supply赋值 if total_capabity1_val == 'Demand' or total_capabity1_val == 'Supply': cp_datetime_columns = cp_df.columns[53:] for col_idx in range(4,len(ds_df.columns)): ds_datetime = ds_df.columns.get_level_values(1)[col_idx] ds_month = ds_df.columns.get_level_values(0)[col_idx] if type(ds_datetime) == str and ds_datetime != 'TTL' and ds_datetime != 'Total' and (ds_datetime in cp_datetime_columns): ds_worksheet.range((row_idx + 3,col_idx + 1)).value = row[(f'{ds_month}',f'{ds_datetime}')] print(f"ds_sheet的第{row_idx + 3}行第{col_idx + 1}列被设置为{row[(f'{ds_month}',f'{ds_datetime}')]}") elif type(ds_datetime) == datetime.datetime and (ds_datetime in cp_datetime_columns): ds_worksheet.range((row_idx + 3,col_idx + 1)).value = row[(f'{ds_month}',ds_datetime)] print(f"ds_sheet的第{row_idx + 3}行第{col_idx + 1}列被设置为{row[(f'{ds_month}',ds_datetime)]}")
如上的程式碼確實解決了問題,也即有公式的單元格的公式被保留了。但是,根據我們文章開頭提到的Python處理excel的忠告,這個程式碼是有嚴重性能問題的,因為它通過api頻繁操作excel的單元格,導致寫入非常慢,在我的老邁Mac本上一共跑了40分鐘,簡直不可接受,故方案只能放棄。
「方案2」
這個方案是希望做到讀取excel有公式值的儲存格的時候,能保留公式值。這只能從各個Python的excel庫的API來尋找有無對應的方法了。 Pandas的read_excel()方法我仔細看了一下沒有對應的參數可以支援。 Openpyxl我倒是找到了一個API可以支持,如下:
import openpyxl ds_format_workbook = openpyxl.load_workbook(fpath,data_only=False) ds_wooksheet = ds_format_workbook['DS'] ds_df = pd.DataFrame(ds_wooksheet.values)
關鍵是這裡的data_only參數,為True則返回數據,為False的情況下可以保留公式值
#本以為找到了對應解決方案正一頓竊喜,但當我看到透過openpyxl讀取到dataframe中的資料結構的時候,才被破了一盆冷水。因為我的excel表的表頭是比較複雜的兩級的表頭,表頭中還存在合併和拆分單元格的情況,這樣的表頭被openpyxl讀取到dataframe後,沒有按照pandas的多級索引進行處理,而是簡單的被處理成數字索引0123...
但我對dataframe的計算會依賴多層索引,因此openpyxl的這種處理方式導致我後面的計算無法處理。
openpyxl不行,再看看xlwings呢?透過對xlwings API文件的一通尋找,還真給我找到了,如下所示:
#Range類別提供了一個Property叫formula,可以取得和設定formula。
看到這個我簡直如獲至寶,趕緊程式碼操練起來。也許出於慣性,又或許是被之前按行列單元格操作excel的效率搞怕了,我直接先想到的方案還是一次性批量搞定,也即一次性讀取excel所有的公式,然後再一次性寫回去,所以我一開始的程式碼是這樣的:
#使用xlwings来读取formula app = xw.App(visible=False,add_book=False) ds_format_workbook = app.books.open(fpath) ds_worksheet = ds_format_workbook.sheets["DS"] #先把所有公式一次性读取并保存下来 formulas = ds_worksheet.used_range.formula #中间计算过程省略... #一次性把所有公式写回去 ds_worksheet.used_range.formula = formulas
可是我想錯了,ds_worksheet.used_range.formula讓我誤解只會返回excel中的有公式的單元格的公式,但其實它傳回的是所有的儲存格,只是對有公式的儲存格保留了公式。所以,當我重新寫回公式的時候,會覆寫我透過dataframe計算完並寫入excel的其他的值。
既然這樣的話,那我只能對有公式的單元格分別處理而不是一次性處理了,所以代碼得這樣寫:
#使用xlwings来读取formula app = xw.App(visible=False,add_book=False) ds_format_workbook = app.books.open(fpath) ds_worksheet = ds_format_workbook.sheets["DS"] #保留excel中的formula #找到DS中Total所在的行,Total之后的行都是formula row = ds_df.loc[ds_df[('Total','Capabity')]=='Total '] total_row_index = row.index.values[0] #获取对应excel的行号(dataframe把两层表头当做索引,从数据行开始计数,而且从0开始计数。excel从表头就开始计数,而且从1开始计数) excel_total_row_idx = int(total_row_index+2) #获取excel最后一行的索引 excel_last_row_idx = ds_worksheet.used_range.rows.count #保留按日期计算的各列的formula I_col_formula = ds_worksheet.range(f'I3:I{excel_total_row_idx}').formula N_col_formula = ds_worksheet.range(f'N3:N{excel_total_row_idx}').formula T_col_formula = ds_worksheet.range(f'T3:T{excel_total_row_idx}').formula U_col_formula = ds_worksheet.range(f'U3:U{excel_total_row_idx}').formula Z_col_formula = ds_worksheet.range(f'Z3:Z{excel_total_row_idx}').formula AE_col_formula = ds_worksheet.range(f'AE3:AE{excel_total_row_idx}').formula AK_col_formula = ds_worksheet.range(f'AK3:AK{excel_total_row_idx}').formula AL_col_formula = ds_worksheet.range(f'AL3:AL{excel_total_row_idx}').formula #保留Total行开始一直到末尾所有行的formula total_to_last_formula = ds_worksheet.range(f'A{excel_total_row_idx+1}:AL{excel_last_row_idx}').formula #中间计算过程省略... #保存结果到excel #直接把ds_df完整赋值给excel,会导致excel原有的公式被值覆盖 ds_worksheet.range("A1").expand().options(index=False).value = ds_df #用之前保留的formulas,重置公式 ds_worksheet.range(f'I3:I{excel_total_row_idx}').formula = I_col_formula ds_worksheet.range(f'N3:N{excel_total_row_idx}').formula = N_col_formula ds_worksheet.range(f'T3:T{excel_total_row_idx}').formula = T_col_formula ds_worksheet.range(f'U3:U{excel_total_row_idx}').formula = U_col_formula ds_worksheet.range(f'Z3:Z{excel_total_row_idx}').formula = Z_col_formula ds_worksheet.range(f'AE3:AE{excel_total_row_idx}').formula = AE_col_formula ds_worksheet.range(f'AK3:AK{excel_total_row_idx}').formula = AK_col_formula ds_worksheet.range(f'AL3:AL{excel_total_row_idx}').formula = AL_col_formula ds_worksheet.range(f'A{excel_total_row_idx+1}:AL{excel_last_row_idx}').formula = total_to_last_formula ds_format_workbook.save() ds_format_workbook.close() app.quit()
經測試,如上代碼完美地解決我的需求,而且效能上也完全沒問題。
以上是Python如何處理Excel檔案?的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

熱門話題

MySQL 有免費的社區版和收費的企業版。社區版可免費使用和修改,但支持有限,適合穩定性要求不高、技術能力強的應用。企業版提供全面商業支持,適合需要穩定可靠、高性能數據庫且願意為支持買單的應用。選擇版本時考慮的因素包括應用關鍵性、預算和技術技能。沒有完美的選項,只有最合適的方案,需根據具體情況謹慎選擇。

HadiDB:輕量級、高水平可擴展的Python數據庫HadiDB(hadidb)是一個用Python編寫的輕量級數據庫,具備高度水平的可擴展性。安裝HadiDB使用pip安裝:pipinstallhadidb用戶管理創建用戶:createuser()方法創建一個新用戶。 authentication()方法驗證用戶身份。 fromhadidb.operationimportuseruser_obj=user("admin","admin")user_obj.

直接通過 Navicat 查看 MongoDB 密碼是不可能的,因為它以哈希值形式存儲。取回丟失密碼的方法:1. 重置密碼;2. 檢查配置文件(可能包含哈希值);3. 檢查代碼(可能硬編碼密碼)。

MySQL 可在無需網絡連接的情況下運行,進行基本的數據存儲和管理。但是,對於與其他系統交互、遠程訪問或使用高級功能(如復制和集群)的情況,則需要網絡連接。此外,安全措施(如防火牆)、性能優化(選擇合適的網絡連接)和數據備份對於連接到互聯網的 MySQL 數據庫至關重要。

MySQL Workbench 可以連接 MariaDB,前提是配置正確。首先選擇 "MariaDB" 作為連接器類型。在連接配置中,正確設置 HOST、PORT、USER、PASSWORD 和 DATABASE。測試連接時,檢查 MariaDB 服務是否啟動,用戶名和密碼是否正確,端口號是否正確,防火牆是否允許連接,以及數據庫是否存在。高級用法中,使用連接池技術優化性能。常見錯誤包括權限不足、網絡連接問題等,調試錯誤時仔細分析錯誤信息和使用調試工具。優化網絡配置可以提升性能

MySQL數據庫性能優化指南在資源密集型應用中,MySQL數據庫扮演著至關重要的角色,負責管理海量事務。然而,隨著應用規模的擴大,數據庫性能瓶頸往往成為製約因素。本文將探討一系列行之有效的MySQL性能優化策略,確保您的應用在高負載下依然保持高效響應。我們將結合實際案例,深入講解索引、查詢優化、數據庫設計以及緩存等關鍵技術。 1.數據庫架構設計優化合理的數據庫架構是MySQL性能優化的基石。以下是一些核心原則:選擇合適的數據類型選擇最小的、符合需求的數據類型,既能節省存儲空間,又能提升數據處理速度

無法連接 MySQL 可能是由於以下原因:MySQL 服務未啟動、防火牆攔截連接、端口號錯誤、用戶名或密碼錯誤、my.cnf 中的監聽地址配置不當等。排查步驟包括:1. 檢查 MySQL 服務是否正在運行;2. 調整防火牆設置以允許 MySQL 監聽 3306 端口;3. 確認端口號與實際端口號一致;4. 檢查用戶名和密碼是否正確;5. 確保 my.cnf 中的 bind-address 設置正確。

作為數據專業人員,您需要處理來自各種來源的大量數據。這可能會給數據管理和分析帶來挑戰。幸運的是,兩項 AWS 服務可以提供幫助:AWS Glue 和 Amazon Athena。
