目錄
1、讀取xlsx表格:pd.read_excel()
2、取得表格的資料大小:shape
3、索引資料的方法:[ ] / loc[] / iloc[]
4、判斷資料為空:np.isnan() / pd.isnull()
5、找出符合條件的資料
6、修改元素值:replace()
7、增加資料:[ ]
8、刪除資料:del() / drop()
9、儲存到excel檔案:to_excel()
首頁 後端開發 Python教學 如何用Python的Pandas函式庫處理Excel資料?

如何用Python的Pandas函式庫處理Excel資料?

May 08, 2023 pm 09:49 PM
excel python pandas

1、讀取xlsx表格:pd.read_excel()

原始內容如下:

如何用Python的Pandas函式庫處理Excel資料?

a)讀取第n個Sheet(子表,在左下方可以查看或增刪子表)的資料

import pandas as pd
# 每次都需要修改的路径
path = "test.xlsx"
# sheet_name默认为0,即读取第一个sheet的数据
sheet = pd.read_excel(path, sheet_name=0)
print(sheet)
"""
  Unnamed: 0  name1  name2  name3
0       row1      1    2.0      3
1       row2      4    NaN      6
2       row3      7    8.0      9
"""
登入後複製

可以注意到,原始表格左上角沒有填入內容,讀取的結果是「Unnamed : 0” ,這是由於read_excel函數會預設把表格的第一行為列索引名稱。另外,對於行索引名來說,預設從第二行開始編號(因為預設第一行是列索引名,所以預設第一行不是資料),如果不刻意指定,則自動從0開始編號,如下。

sheet = pd.read_excel(path)
# 查看列索引名,返回列表形式
print(sheet.columns.values)
# 查看行索引名,默认从第二行开始编号,如果不特意指定,则自动从0开始编号,返回列表形式
print(sheet.index.values)
"""
['Unnamed: 0' 'name1' 'name2' 'name3']
[0 1 2]
"""
登入後複製

b)列索引名也可以自定義,如下:

sheet = pd.read_excel(path, names=['col1', 'col2', 'col3', 'col4'])
print(sheet)
# 查看列索引名,返回列表形式
print(sheet.columns.values)
"""
   col1  col2  col3  col4
0  row1     1   2.0     3
1  row2     4   NaN     6
2  row3     7   8.0     9
['col1' 'col2' 'col3' 'col4']
"""
登入後複製

c)也可以指定第n列為行索引名 ,如下:

# 指定第一列为行索引
sheet = pd.read_excel(path, index_col=0)
print(sheet)
"""
      name1  name2  name3
row1      1    2.0      3
row2      4    NaN      6
row3      7    8.0      9
"""
登入後複製

d)讀取時跳過第n行的資料

# 跳过第2行的数据(第一行索引为0)
sheet = pd.read_excel(path, skiprows=[1])
print(sheet)
"""
  Unnamed: 0  name1  name2  name3
0       row2      4    NaN      6
1       row3      7    8.0      9
"""
登入後複製

2、取得表格的資料大小:shape

path = "test.xlsx"
# 指定第一列为行索引
sheet = pd.read_excel(path, index_col=0)
print(sheet)
print('==========================')
print('shape of sheet:', sheet.shape)
"""
      name1  name2  name3
row1      1    2.0      3
row2      4    NaN      6
row3      7    8.0      9
==========================
shape of sheet: (3, 3)
"""
登入後複製

3、索引資料的方法:[ ] / loc[] / iloc[]

#1、直接加方括號索引

可以使用方括號加列名的方式 [col_name] 來提取某列的數據,然後再用方括號加索引數字 [index] 來索引這列的特定位置的值。這裡索引名為name1的列,然後列印位於該列第1行(索引是1)位置的資料:4,如下:

sheet = pd.read_excel(path)
# 读取列名为 name1 的列数据
col = sheet['name1']
print(col)
# 打印该列第二个数据
print(col[1]) # 4
"""
0    1
1    4
2    7
Name: name1, dtype: int64
4
"""
登入後複製

2、iloc方法,依整數編號索引

使用 sheet.iloc[ ] 索引,方括號內為行列的整數位置編號(除去作為行索引的那一列和作為列索引的哪一行後,從0 開始編號)。
a)sheet.iloc[1, 2] :提取第2行第3列資料。第一個是行索引,第二個是列索引

b)sheet.iloc[0: 2] :提取前兩行資料

c)sheet.iloc[0:2, 0:2] :透過分片的方式提取前兩行前兩列 數據

# 指定第一列数据为行索引
sheet = pd.read_excel(path, index_col=0)
# 读取第2行(row2)的第3列(6)数据
# 第一个是行索引,第二个是列索引
data = sheet.iloc[1, 2]
print(data)  # 6
print('================================')
# 通过分片的方式提取 前两行 数据
data_slice = sheet.iloc[0:2]
print(data_slice)
print('================================')
# 通过分片的方式提取 前两行 的 前两列 数据
data_slice = sheet.iloc[0:2, 0:2]
print(data_slice)
"""
6
================================
      name1  name2  name3
row1      1    2.0      3
row2      4    NaN      6
================================
      name1  name2
row1      1    2.0
row2      4    NaN
"""
登入後複製

3、loc方法,依行列名稱索引

使用 sheet.loc[ ] 索引,方括號內為行列的名稱字串。具體使用方式同 iloc ,只是把 iloc 的整數索引替換成了行列的名稱索引。這種索引方式用起來比較直觀。

注意iloc[1: 2] 是不包含2的,但loc['row1': 'row2'] 是包含'row2' 的。

# 指定第一列数据为行索引
sheet = pd.read_excel(path, index_col=0)
# 读取第2行(row2)的第3列(6)数据
# 第一个是行索引,第二个是列索引
data = sheet.loc['row2', 'name3']
print(data)  # 1
print('================================')
# 通过分片的方式提取 前两行 数据
data_slice = sheet.loc['row1': 'row2']
print(data_slice)
print('================================')
# 通过分片的方式提取 前两行 的 前两列 数据
data_slice1 = sheet.loc['row1': 'row2', 'name1': 'name2']
print(data_slice1)
"""
6
================================
      name1  name2  name3
row1      1    2.0      3
row2      4    NaN      6
================================
      name1  name2
row1      1    2.0
row2      4    NaN
"""
登入後複製

4、判斷資料為空:np.isnan() / pd.isnull()

1、使用numpy 函式庫的isnan() pandas 函式庫的isnull() 方法判斷是否等於nan 

sheet = pd.read_excel(path)
# 读取列名为 name1 的列数据
col = sheet['name2']
 
print(np.isnan(col[1]))  # True
print(pd.isnull(col[1]))  # True
"""
True
True
"""
登入後複製

2、使用 str() 轉為字串,判斷是否等於 'nan' 

sheet = pd.read_excel(path)
# 读取列名为 name1 的列数据
col = sheet['name2']
print(col)
# 打印该列第二个数据
if str(col[1]) == 'nan':
    print('col[1] is nan')
"""
0    2.0
1    NaN
2    8.0
Name: name2, dtype: float64
col[1] is nan
"""
登入後複製

5、找出符合條件的資料

下面的程式碼義會一下吧

# 提取name1 == 1 的行
mask = (sheet['name1'] == 1)
x = sheet.loc[mask]
print(x)
"""
      name1  name2  name3
row1      1    2.0      3
"""
登入後複製

6、修改元素值:replace()

sheet['name2'].replace(2, 100, inplace=True) :把name2 列的元素2 改為元素100,原位操作。

sheet['name2'].replace(2, 100, inplace=True)
print(sheet)
"""
      name1  name2  name3
row1      1  100.0      3
row2      4    NaN      6
row3      7    8.0      9
"""
登入後複製

sheet['name2'].replace(np.nan, 100, inplace=True) :把name2 欄位的空元素(nan)改為元素100,原位操作。

import numpy as np 
sheet['name2'].replace(np.nan, 100, inplace=True)
print(sheet)
print(type(sheet.loc['row2', 'name2']))
"""
      name1  name2  name3
row1      1    2.0      3
row2      4  100.0      6
row3      7    8.0      9
"""
登入後複製

7、增加資料:[ ]

增加列,直接使用中括號 [ 要新增的名字 ] 新增。

sheet['name_add'] = [55, 66, 77] :新增名為name_add 的資料列,值為[55, 66, 77]

path = "test.xlsx"
# 指定第一列为行索引
sheet = pd.read_excel(path, index_col=0)
print(sheet)
print('====================================')
# 添加名为 name_add 的列,值为[55, 66, 77]
sheet['name_add'] = [55, 66, 77]
print(sheet)
"""
      name1  name2  name3
row1      1    2.0      3
row2      4    NaN      6
row3      7    8.0      9
====================================
      name1  name2  name3  name_add
row1      1    2.0      3        55
row2      4    NaN      6        66
row3      7    8.0      9        77
"""
登入後複製

8、刪除資料:del() / drop()

a)del(sheet['name3']) :使用del 方法刪除

sheet = pd.read_excel(path, index_col=0)
# 使用 del 方法删除 'name3' 的列
del(sheet['name3'])
print(sheet)
"""
      name1  name2
row1      1    2.0
row2      4    NaN
row3      7    8.0
"""
登入後複製

b)sheet.drop('row1', axis=0)

使用drop 方法刪除row1 行,刪除列的話對應的axis=1。

當inplace 參數為True 時,不會傳回參數,直接在原始資料上刪除

當inplace 參數為False (預設)時不會修改原數據,而是傳回修改後的資料

sheet.drop('row1', axis=0, inplace=True)
print(sheet)
"""
      name1  name2  name3
row2      4    NaN      6
row3      7    8.0      9
"""
登入後複製

c)sheet.drop(labels=['name1', 'name2'], axis=1)

使用label=[ ] 參數可以刪除多行或多列

# 删除多列,默认 inplace 参数位 False,即会返回结果
print(sheet.drop(labels=['name1', 'name2'], axis=1))
"""
      name3
row1      3
row2      6
row3      9
"""
登入後複製

9、儲存到excel檔案:to_excel()

1、把pandas 格式的資料儲存為.xlsx 檔案

#
names = ['a', 'b', 'c']
scores = [99, 100, 99]
result_excel = pd.DataFrame()
result_excel["姓名"] = names
result_excel["评分"] = scores
# 写入excel
result_excel.to_excel('test3.xlsx')
登入後複製

如何用Python的Pandas函式庫處理Excel資料?

 2、把改好的excel 檔另存為.xlsx 檔。

例如修改原表格中的 nan 為 100 後,儲存檔案:

import numpy as np 
# 指定第一列为行索引
sheet = pd.read_excel(path, index_col=0)
sheet['name2'].replace(np.nan, 100, inplace=True)
sheet.to_excel('test2.xlsx')
登入後複製

開啟 test2.xlsx 結果如下:

如何用Python的Pandas函式庫處理Excel資料?

#

以上是如何用Python的Pandas函式庫處理Excel資料?的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

<🎜>:泡泡膠模擬器無窮大 - 如何獲取和使用皇家鑰匙
3 週前 By 尊渡假赌尊渡假赌尊渡假赌
北端:融合系統,解釋
3 週前 By 尊渡假赌尊渡假赌尊渡假赌
Mandragora:巫婆樹的耳語 - 如何解鎖抓鉤
3 週前 By 尊渡假赌尊渡假赌尊渡假赌

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

熱門話題

Java教學
1666
14
CakePHP 教程
1425
52
Laravel 教程
1323
25
PHP教程
1272
29
C# 教程
1251
24
PHP和Python:解釋了不同的範例 PHP和Python:解釋了不同的範例 Apr 18, 2025 am 12:26 AM

PHP主要是過程式編程,但也支持面向對象編程(OOP);Python支持多種範式,包括OOP、函數式和過程式編程。 PHP適合web開發,Python適用於多種應用,如數據分析和機器學習。

在PHP和Python之間進行選擇:指南 在PHP和Python之間進行選擇:指南 Apr 18, 2025 am 12:24 AM

PHP適合網頁開發和快速原型開發,Python適用於數據科學和機器學習。 1.PHP用於動態網頁開發,語法簡單,適合快速開發。 2.Python語法簡潔,適用於多領域,庫生態系統強大。

sublime怎麼運行代碼python sublime怎麼運行代碼python Apr 16, 2025 am 08:48 AM

在 Sublime Text 中運行 Python 代碼,需先安裝 Python 插件,再創建 .py 文件並編寫代碼,最後按 Ctrl B 運行代碼,輸出會在控制台中顯示。

Python vs. JavaScript:學習曲線和易用性 Python vs. JavaScript:學習曲線和易用性 Apr 16, 2025 am 12:12 AM

Python更適合初學者,學習曲線平緩,語法簡潔;JavaScript適合前端開發,學習曲線較陡,語法靈活。 1.Python語法直觀,適用於數據科學和後端開發。 2.JavaScript靈活,廣泛用於前端和服務器端編程。

PHP和Python:深入了解他們的歷史 PHP和Python:深入了解他們的歷史 Apr 18, 2025 am 12:25 AM

PHP起源於1994年,由RasmusLerdorf開發,最初用於跟踪網站訪問者,逐漸演變為服務器端腳本語言,廣泛應用於網頁開發。 Python由GuidovanRossum於1980年代末開發,1991年首次發布,強調代碼可讀性和簡潔性,適用於科學計算、數據分析等領域。

Golang vs. Python:性能和可伸縮性 Golang vs. Python:性能和可伸縮性 Apr 19, 2025 am 12:18 AM

Golang在性能和可擴展性方面優於Python。 1)Golang的編譯型特性和高效並發模型使其在高並發場景下表現出色。 2)Python作為解釋型語言,執行速度較慢,但通過工具如Cython可優化性能。

vscode在哪寫代碼 vscode在哪寫代碼 Apr 15, 2025 pm 09:54 PM

在 Visual Studio Code(VSCode)中編寫代碼簡單易行,只需安裝 VSCode、創建項目、選擇語言、創建文件、編寫代碼、保存並運行即可。 VSCode 的優點包括跨平台、免費開源、強大功能、擴展豐富,以及輕量快速。

notepad 怎麼運行python notepad 怎麼運行python Apr 16, 2025 pm 07:33 PM

在 Notepad 中運行 Python 代碼需要安裝 Python 可執行文件和 NppExec 插件。安裝 Python 並為其添加 PATH 後,在 NppExec 插件中配置命令為“python”、參數為“{CURRENT_DIRECTORY}{FILE_NAME}”,即可在 Notepad 中通過快捷鍵“F6”運行 Python 代碼。

See all articles