目錄
springboot設定雙kafka
引入Maven kafka jar、準備兩個kafka;
設定yml設定檔
配置KafkaConfig類別
發送工具類別MyKafkaProducer
測試類別
接收類別
測試結果
首頁 Java java教程 springboot怎麼配置雙kafka

springboot怎麼配置雙kafka

May 10, 2023 pm 06:43 PM
springboot kafka

springboot設定雙kafka

使用spring boot 2.0.8.RELEASE 版本

引入Maven kafka jar、準備兩個kafka;

<dependency>
    <groupId>org.springframework.kafka</groupId>
    <artifactId>spring-kafka</artifactId>
</dependency>
登入後複製

設定yml設定檔

spring:
  kafka:
    bootstrap-servers: 180.167.180.242:9092 #kafka的访问地址,多个用","隔开
    consumer:
      enable-auto-commit: true
      group-id: kafka #群组ID
  outkafka:
    bootstrap-servers: localhost:9092 #kafka的访问地址,多个用","隔开
    consumer:
      enable-auto-commit: true
      group-id: kafka_1 #群组ID
登入後複製

配置KafkaConfig類別

import java.util.HashMap;
import java.util.Map;
 
import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.common.serialization.StringDeserializer;
import org.apache.kafka.common.serialization.StringSerializer;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.context.annotation.Primary;
import org.springframework.kafka.annotation.EnableKafka;
import org.springframework.kafka.config.ConcurrentKafkaListenerContainerFactory;
import org.springframework.kafka.config.KafkaListenerContainerFactory;
import org.springframework.kafka.core.ConsumerFactory;
import org.springframework.kafka.core.DefaultKafkaConsumerFactory;
import org.springframework.kafka.core.DefaultKafkaProducerFactory;
import org.springframework.kafka.core.KafkaTemplate;
import org.springframework.kafka.core.ProducerFactory;
import org.springframework.kafka.listener.ConcurrentMessageListenerContainer;
 
@Configuration
@EnableKafka
public class KafkaConfig {
    @Value("${spring.kafka.bootstrap-servers}")
    private String innerServers;
    @Value("${spring.kafka.consumer.group-id}")
    private String innerGroupid;
    @Value("${spring.kafka.consumer.enable-auto-commit}")
    private String innerEnableAutoCommit;
 
    @Bean
    @Primary//理解为默认优先选择当前容器下的消费者工厂
    KafkaListenerContainerFactory<ConcurrentMessageListenerContainer<Integer, String>> kafkaListenerContainerFactory() {
        ConcurrentKafkaListenerContainerFactory<Integer, String> factory = new ConcurrentKafkaListenerContainerFactory<>();
        factory.setConsumerFactory(consumerFactory());
        factory.setConcurrency(3);
        factory.getContainerProperties().setPollTimeout(3000);
        return factory;
    }
 
    @Bean//第一个消费者工厂的bean
    public ConsumerFactory<Integer, String> consumerFactory() {
        return new DefaultKafkaConsumerFactory<>(consumerConfigs());
    }
 
    @Bean
    public Map<String, Object> consumerConfigs() {
        Map<String, Object> props = new HashMap<>();
        props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, innerServers);
        props.put(ConsumerConfig.GROUP_ID_CONFIG, innerGroupid);
        props.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, innerEnableAutoCommit);
//        props.put(ConsumerConfig.AUTO_COMMIT_INTERVAL_MS_CONFIG, "100");
//        props.put(ConsumerConfig.SESSION_TIMEOUT_MS_CONFIG, "15000");
        props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);
        props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);
        return props;
    }
    
    @Bean //生产者工厂配置
    public ProducerFactory<String, String> producerFactory() {
        return new DefaultKafkaProducerFactory<>(senderProps());
    }
    
    @Bean //kafka发送消息模板
    public KafkaTemplate<String, String> kafkaTemplate() {
        return new KafkaTemplate<String, String>(producerFactory());
    }
    
    /**
     * 生产者配置方法
     *
     * 生产者有三个必选属性
     * <p>
     * 1.bootstrap.servers broker地址清单,清单不要包含所有的broker地址,
     * 生产者会从给定的broker里查找到其他broker的信息。不过建议至少提供两个broker信息,一旦 其中一个宕机,生产者仍能能够连接到集群上。
     * </p>
     * <p>
     * 2.key.serializer broker希望接收到的消息的键和值都是字节数组。 生产者用对应的类把键对象序列化成字节数组。
     * </p>
     * <p>
     * 3.value.serializer 值得序列化方式
     * </p>
     *
     *
     * @return
     */
    private Map<String, Object> senderProps() {
        Map<String, Object> props = new HashMap<>();
        props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, innerServers);
        /**
         * 当从broker接收到的是临时可恢复的异常时,生产者会向broker重发消息,但是不能无限
         * 制重发,如果重发次数达到限制值,生产者将不会重试并返回错误。
         * 通过retries属性设置。默认情况下生产者会在重试后等待100ms,可以通过 retries.backoff.ms属性进行修改
         */
        props.put(ProducerConfig.RETRIES_CONFIG, 0);
        /**
         * 在考虑完成请求之前,生产者要求leader收到的确认数量。这可以控制发送记录的持久性。允许以下设置:
         * <ul>
         * <li>
         * <code> acks = 0 </ code>如果设置为零,则生产者将不会等待来自服务器的任何确认。该记录将立即添加到套接字缓冲区并视为已发送。在这种情况下,无法保证服务器已收到记录,并且
         * <code>retries </ code>配置将不会生效(因为客户端通常不会知道任何故障)。为每条记录返回的偏移量始终设置为-1。
         * <li> <code> acks = 1 </code>
         * 这意味着leader会将记录写入其本地日志,但无需等待所有follower的完全确认即可做出回应。在这种情况下,
         * 如果leader在确认记录后立即失败但在关注者复制之前,则记录将丢失。
         * <li><code> acks = all </code>
         * 这意味着leader将等待完整的同步副本集以确认记录。这保证了只要至少一个同步副本仍然存活,记录就不会丢失。这是最强有力的保证。
         * 这相当于acks = -1设置
         */
        props.put(ProducerConfig.ACKS_CONFIG, "1");
        /**
         * 当有多条消息要被发送到统一分区是,生产者会把他们放到统一批里。kafka通过批次的概念来 提高吞吐量,但是也会在增加延迟。
         */
        // 以下配置当缓存数量达到16kb,就会触发网络请求,发送消息
//        props.put(ProducerConfig.BATCH_SIZE_CONFIG, 16384);
        // 每条消息在缓存中的最长时间,如果超过这个时间就会忽略batch.size的限制,由客户端立即将消息发送出去
//        props.put(ProducerConfig.LINGER_MS_CONFIG, 1);
//        props.put(ProducerConfig.BUFFER_MEMORY_CONFIG, 33554432);
        props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class);
        props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class);
        return props;
    }
    
    @Value("${spring.outkafka.bootstrap-servers}")
    private String outServers;
    @Value("${spring.outkafka.consumer.group-id}")
    private String outGroupid;
    @Value("${spring.outkafka.consumer.enable-auto-commit}")
    private String outEnableAutoCommit;
    
 
    static {
        
    }
    
    /**
     * 连接第二个kafka集群的配置
     */
    @Bean
    KafkaListenerContainerFactory<ConcurrentMessageListenerContainer<Integer, String>> kafkaListenerContainerFactoryOutSchedule() {
        ConcurrentKafkaListenerContainerFactory<Integer, String> factory = new ConcurrentKafkaListenerContainerFactory<>();
        factory.setConsumerFactory(consumerFactoryOutSchedule());
        factory.setConcurrency(3);
        factory.getContainerProperties().setPollTimeout(3000);
        return factory;
    }
 
    @Bean
    public ConsumerFactory<Integer, String> consumerFactoryOutSchedule() {
        return new DefaultKafkaConsumerFactory<>(consumerConfigsOutSchedule());
    }
 
    /**
     * 连接第二个集群的消费者配置
     */
    @Bean
    public Map<String, Object> consumerConfigsOutSchedule() {
        Map<String, Object> props = new HashMap<>();
        props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, outServers);
        props.put(ConsumerConfig.GROUP_ID_CONFIG, outGroupid);
        props.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, outEnableAutoCommit);
        props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);
        props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);
        return props;
    }
    
    @Bean //生产者工厂配置
    public ProducerFactory<String, String> producerOutFactory() {
        return new DefaultKafkaProducerFactory<>(senderOutProps());
    }
    
    @Bean //kafka发送消息模板
    public KafkaTemplate<String, String> kafkaOutTemplate() {
        return new KafkaTemplate<String, String>(producerOutFactory());
    }
    
    /**
     * 生产者配置方法
     *
     * 生产者有三个必选属性
     * <p>
     * 1.bootstrap.servers broker地址清单,清单不要包含所有的broker地址,
     * 生产者会从给定的broker里查找到其他broker的信息。不过建议至少提供两个broker信息,一旦 其中一个宕机,生产者仍能能够连接到集群上。
     * </p>
     * <p>
     * 2.key.serializer broker希望接收到的消息的键和值都是字节数组。 生产者用对应的类把键对象序列化成字节数组。
     * </p>
     * <p>
     * 3.value.serializer 值得序列化方式
     * </p>
     *
     *
     * @return
     */
    private Map<String, Object> senderOutProps() {
        Map<String, Object> props = new HashMap<>();
        props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, outServers);
        /**
         * 当从broker接收到的是临时可恢复的异常时,生产者会向broker重发消息,但是不能无限
         * 制重发,如果重发次数达到限制值,生产者将不会重试并返回错误。
         * 通过retries属性设置。默认情况下生产者会在重试后等待100ms,可以通过 retries.backoff.ms属性进行修改
         */
        props.put(ProducerConfig.RETRIES_CONFIG, 0);
        /**
         * 在考虑完成请求之前,生产者要求leader收到的确认数量。这可以控制发送记录的持久性。允许以下设置:
         * <ul>
         * <li>
         * <code> acks = 0 </ code>如果设置为零,则生产者将不会等待来自服务器的任何确认。该记录将立即添加到套接字缓冲区并视为已发送。在这种情况下,无法保证服务器已收到记录,并且
         * <code>retries </ code>配置将不会生效(因为客户端通常不会知道任何故障)。为每条记录返回的偏移量始终设置为-1。
         * <li> <code> acks = 1 </code>
         * 这意味着leader会将记录写入其本地日志,但无需等待所有follower的完全确认即可做出回应。在这种情况下,
         * 如果leader在确认记录后立即失败但在关注者复制之前,则记录将丢失。
         * <li><code> acks = all </code>
         * 这意味着leader将等待完整的同步副本集以确认记录。这保证了只要至少一个同步副本仍然存活,记录就不会丢失。这是最强有力的保证。
         * 这相当于acks = -1设置
         */
        props.put(ProducerConfig.ACKS_CONFIG, "1");
        /**
         * 当有多条消息要被发送到统一分区是,生产者会把他们放到统一批里。kafka通过批次的概念来 提高吞吐量,但是也会在增加延迟。
         */
        // 以下配置当缓存数量达到16kb,就会触发网络请求,发送消息
//        props.put(ProducerConfig.BATCH_SIZE_CONFIG, 16384);
        // 每条消息在缓存中的最长时间,如果超过这个时间就会忽略batch.size的限制,由客户端立即将消息发送出去
//        props.put(ProducerConfig.LINGER_MS_CONFIG, 1);
//        props.put(ProducerConfig.BUFFER_MEMORY_CONFIG, 33554432);
        props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class);
        props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class);
        return props;
    }
}
登入後複製

發送工具類別MyKafkaProducer

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.kafka.core.KafkaTemplate;
import org.springframework.kafka.support.SendResult;
import org.springframework.scheduling.annotation.EnableScheduling;
import org.springframework.stereotype.Component;
import org.springframework.util.concurrent.ListenableFuture;
 
import lombok.extern.slf4j.Slf4j;
 
/**
 * <p>
 * <b>KafkaProducer Description:</b> kafka生产者
 * </p>
 *
 * @author douzaixing<b>DATE</b> 2019年7月8日 下午4:09:29
 */
@Component // 这个必须加入容器不然,不会执行
@EnableScheduling // 这里是为了测试加入定时调度
@Slf4j
public class MyKafkaProducer {
 
    @Autowired
    private KafkaTemplate<String, String> kafkaTemplate;
 
    @Autowired
    private KafkaTemplate<String, String> kafkaOutTemplate;
 
    public ListenableFuture<SendResult<String, String>> send(String topic, String key, String json) {
        ListenableFuture<SendResult<String, String>> result = kafkaTemplate.send(topic, key, json);
        log.info("inner kafka send #topic=" + topic + "#key=" + key + "#json=" + json + "#推送成功===========");
        return result;
    }
 
    public ListenableFuture<SendResult<String, String>> sendOut(String topic, String key, String json) {
        ListenableFuture<SendResult<String, String>> result = kafkaOutTemplate.send(topic, key, json);
        log.info("out kafka send #topic=" + topic + "#key=" + key + "#json=" + json + "#推送成功===========");
        return result;
    }
 
}
登入後複製

測試類別

@Slf4j
@RunWith(SpringJUnit4ClassRunner.class)
@SpringBootTest(classes={OesBcServiceApplication.class})
public class MoreKafkaTest {
    
    @Autowired
    private MyKafkaProducer kafkaProducer;
    
    @Test
    public void sendInner() {
        for (int i = 0; i < 1; i++) {
            kafkaProducer.send("inner_test", "douzi" + i, "liyuehua" + i);
            kafkaProducer.sendOut("out_test", "douziout" + i, "fanbingbing" + i);
        }
    }
}
登入後複製

接收類別

@Component
@Slf4j
public class KafkaConsumer {  
    @KafkaListener(topics={"inner_test"}, containerFactory="kafkaListenerContainerFactory")
    public void innerlistener(ConsumerRecord<String, String> record) {
        log.info("inner kafka receive #key=" + record.key() + "#value=" + record.value());
    }
    
    @KafkaListener(topics={"out_test"}, containerFactory="kafkaListenerContainerFactoryOutSchedule")
    public void outListener(ConsumerRecord<String, String> record) {
        log.info("out kafka receive #key=" + record.key() + "#value=" + record.value());
    }
}
登入後複製

測試結果

07-11 12:41:27.811 INFO  [com.wondertek.oes.bc.service.send.MyKafkaProducer] - inner kafka send #topic=inner_test#key=douzi0#json=liyuehua0 ==========
 
07-11 12:41:27.995 INFO  [com.wondertek.oes.bc.service.send.KafkaConsumer] - inner kafka receive #key=douzi0#value =liyuehua0
07-11 12:41:28.005 INFO  [com.wondertek.oes.bc.service.send.MyKafkaProducer] - out kafka send #topic=out_test#key=douziout00#json=lbingbingbing =========
07-11 12:41:28.013 INFO  [com.wondertek.oes.bc.service.send.KafkaConsumer] - out kafka receive #key=douziout0#value=fanbingbingbing0

以上是springboot怎麼配置雙kafka的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

AI Hentai Generator

AI Hentai Generator

免費產生 AI 無盡。

熱門文章

R.E.P.O.能量晶體解釋及其做什麼(黃色晶體)
1 個月前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳圖形設置
1 個月前 By 尊渡假赌尊渡假赌尊渡假赌
威爾R.E.P.O.有交叉遊戲嗎?
1 個月前 By 尊渡假赌尊渡假赌尊渡假赌

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

如何使用PHP和Kafka實現即時股票分析 如何使用PHP和Kafka實現即時股票分析 Jun 28, 2023 am 10:04 AM

隨著網路和科技的發展,數位化投資已成為人們越來越關注的話題。許多投資人不斷探索研究投資策略,希望能獲得更高的投資報酬率。在股票交易中,即時的股票分析對決策非常重要,其中使用Kafka即時訊息隊列和PHP技術實現更是一種高效且實用的手段。一、Kafka介紹Kafka是由LinkedIn公司開發的一個高吞吐量的分散式發布、訂閱訊息系統。 Kafka的主要特點是

SpringBoot與SpringMVC的比較及差別分析 SpringBoot與SpringMVC的比較及差別分析 Dec 29, 2023 am 11:02 AM

SpringBoot和SpringMVC都是Java開發中常用的框架,但它們之間有一些明顯的差異。本文將探究這兩個框架的特點和用途,並對它們的差異進行比較。首先,我們來了解一下SpringBoot。 SpringBoot是由Pivotal團隊開發的,它旨在簡化基於Spring框架的應用程式的建立和部署。它提供了一種快速、輕量級的方式來建立獨立的、可執行

如何利用React與Apache Kafka建構即時資料處理應用 如何利用React與Apache Kafka建構即時資料處理應用 Sep 27, 2023 pm 02:25 PM

如何利用React和ApacheKafka來建立即時資料處理應用介紹:隨著大數據與即時資料處理的興起,建構即時資料處理應用成為了許多開發者的追求。 React作為一個流行的前端框架,與ApacheKafka作為一個高效能的分散式訊息系統的結合,可以幫助我們建立即時資料處理應用。本文將介紹如何利用React和ApacheKafka建構即時資料處理應用,並

SpringBoot+Dubbo+Nacos 開發實戰教程 SpringBoot+Dubbo+Nacos 開發實戰教程 Aug 15, 2023 pm 04:49 PM

本文來寫個詳細的例子來說下dubbo+nacos+Spring Boot開發實戰。本文不會講述太多的理論的知識,會寫一個最簡單的例子來說明dubbo如何與nacos整合,快速建構開發環境。

五種選擇的可視化工具,用於探索Kafka 五種選擇的可視化工具,用於探索Kafka Feb 01, 2024 am 08:03 AM

Kafka視覺化工具的五種選擇ApacheKafka是一個分散式串流處理平台,能夠處理大量即時資料。它廣泛用於建立即時資料管道、訊息佇列和事件驅動的應用程式。 Kafka的視覺化工具可以幫助使用者監控和管理Kafka集群,並且更好地理解Kafka資料流。以下是對五種流行的Kafka視覺化工具的介紹:ConfluentControlCenterConfluent

kafka視覺化工具比較分析:如何選擇最適合的工具? kafka視覺化工具比較分析:如何選擇最適合的工具? Jan 05, 2024 pm 12:15 PM

如何選擇合適的Kafka視覺化工具?五款工具比較分析引言:Kafka是一種高效能、高吞吐量的分散式訊息佇列系統,被廣泛應用於大數據領域。隨著Kafka的流行,越來越多的企業和開發者需要一個視覺化工具來方便地監控和管理Kafka叢集。本文將介紹五款常用的Kafka視覺化工具,並比較它們的特色和功能,幫助讀者選擇適合自己需求的工具。一、KafkaManager

go-zero與Kafka+Avro的實踐:建構高效能的互動式資料處理系統 go-zero與Kafka+Avro的實踐:建構高效能的互動式資料處理系統 Jun 23, 2023 am 09:04 AM

近年來,隨著大數據的興起和活躍的開源社區,越來越多的企業開始尋找高效能的互動式資料處理系統來滿足日益增長的資料需求。在這場技術升級的浪潮中,go-zero和Kafka+Avro被越來越多的企業所關注和採用。 go-zero是一款基於Golang語言開發的微服務框架,具有高效能、易用、易於擴展、易於維護等特點,旨在幫助企業快速建立高效的微服務應用系統。它的快速成長得

如何在 Rocky Linux 上安裝 Apache Kafka? 如何在 Rocky Linux 上安裝 Apache Kafka? Mar 01, 2024 pm 10:37 PM

在RockyLinux上安裝ApacheKafka可以按照以下步驟進行操作:更新系統:首先,確保你的RockyLinux系統是最新的,執行以下命令更新系統軟體包:sudoyumupdate安裝Java:ApacheKafka依賴Java,因此需要先安裝JavaDevelopmentKit(JDKK )。可以透過以下指令安裝OpenJDK:sudoyuminstalljava-1.8.0-openjdk-devel下載和解壓縮:造訪ApacheKafka官方網站()下載最新的二進位套件。選擇一個穩定版本

See all articles