目錄
#論文概覽
LLaVA 架構
實驗結果
試用回饋
首頁 科技週邊 人工智慧 熔岩羊駝LLaVA來了:像GPT-4一樣可以看圖聊天,無需邀請碼,在線可玩

熔岩羊駝LLaVA來了:像GPT-4一樣可以看圖聊天,無需邀請碼,在線可玩

May 12, 2023 pm 02:28 PM
數據 訓練

熔岩羊駝LLaVA來了:像GPT-4一樣可以看圖聊天,無需邀請碼,在線可玩

GPT-4 的識圖能力什麼時候能上線呢?這個問題目前依然沒有答案。

但研究社群等不及了,紛紛自己上手 DIY,其中最熱門的是名為 MiniGPT-4 的計畫。 MiniGPT-4 展示了許多類似於 GPT-4 的能力,例如產生詳細的圖像描述並從手寫草稿創建網站。此外,作者還觀察到 MiniGPT-4 的其他新興能力,包括根據給定的圖像創作故事和詩歌,提供解決圖像中顯示的問題的解決方案,根據食品照片教導使用者如何烹飪等。該專案上線 3 天就拿到了近一萬的 Star 量。

熔岩羊駝LLaVA來了:像GPT-4一樣可以看圖聊天,無需邀請碼,在線可玩

今天要介紹的計畫-LLaVA(Large Language and Vision Assistant)與之類似,是個由威斯康辛大學麥迪遜分校、微軟研究院和哥倫比亞大學研究者共同發表的多模態大模型。

熔岩羊駝LLaVA來了:像GPT-4一樣可以看圖聊天,無需邀請碼,在線可玩

  • 論文連結:https://arxiv.org/pdf/2304.08485.pdf
  • #專案連結:https://llava-vl.github.io/

#該模型顯示出了一些接近多模態GPT-4 的圖文理解能力:相對於GPT-4 獲得了85.1% 的相對得分。當在科學問答(Science QA)上進行微調時,LLaVA 和 GPT-4 的協同作用實現了 92.53% 準確率的新 SoTA。

熔岩羊駝LLaVA來了:像GPT-4一樣可以看圖聊天,無需邀請碼,在線可玩

以下是機器之心的試用結果(更多結果請見文末):

熔岩羊駝LLaVA來了:像GPT-4一樣可以看圖聊天,無需邀請碼,在線可玩

#論文概覽

人類透過視覺和語言等多種管道與世界交互,因為不同的管道在代表和傳達某些概念時都有各自獨特的優勢,多通道的方式有利於更好地理解世界。人工智慧的核心願望之一是發展一個通用的助手,能夠有效地遵循多模態指令,例如視覺或語言的指令,滿足人類的意圖,在真實環境中完成各種任務。

為此,社群興起了開發基於語言增強的視覺模型的風潮。這類模型在開放世界視覺理解方面具有強大的能力,如分類、偵測、分割和圖文,以及視覺生成和視覺編輯能力。每個任務都由一個大型視覺模型獨立解決,在模型設計中隱含地考慮了任務的需求。此外,語言僅用於描述圖像內容。雖然這使得語言在將視覺訊號映射到語言語義(人類溝通的常見管道)方面發揮了重要作用,但它導致模型通常具有固定的介面,在互動性和對使用者指令的適應性上存在限制。

另一方面,大型語言模型(LLM)已經表明,語言可以發揮更廣泛的作用:作為通用智慧助理的通用互動介面。在通用介面中,各種任務指令可以用語言明確表示,並引導端對端訓練的神經網路助理切換模式來完成任務。例如,ChatGPT 和 GPT-4 最近的成功證明了 LLM 在遵循人類指令完成任務方面的能量,並掀起了開發開源 LLM 的熱潮。其中,LLaMA 是一種與 GPT-3 效能相近的開源 LLM。 Alpaca、Vicuna、GPT-4-LLM 利用各種機器產生的高品質指令追蹤樣本來提高 LLM 的對齊能力,與專有 LLM 相比,展現了令人印象深刻的性能。但遺憾的是,這些模型的輸入僅為文字。

在本文中,研究者提出了視覺 instruction-tuning 方法,首次嘗試將 instruction-tuning 擴展到多模態空間,為建構通用視覺助理鋪平了道路。

具體來說,本文做出了以下貢獻:

  • #多模態指令資料。當下關鍵的挑戰之一是缺乏視覺與語言組成的指令資料。本文提出了一個資料重組方式,使用 ChatGPT/GPT-4 將圖像 - 文字對轉換為適當的指令格式;
  • 大型多模態模型。研究者透過連接 CLIP 的開源視覺編碼器和語言解碼器 LLaMA,開發了一個大型多模態模型(LMM)— LLaVA,並在生成的視覺 - 語言指令資料上進行端到端微調。實證研究驗證了將產生的資料用於 LMM 進行 instruction-tuning 的有效性,並為建立遵循視覺 agent 的通用指令提供了較為實用的技巧。使用 GPT-4,本文在 Science QA 這個多模態推理資料集上實現了最先進的效能。
  • 開源。研究者向公眾發布了以下資產:產生的多模式指令資料、用於資料生成和模型訓練的程式碼庫、模型檢查點和視覺化聊天演示。

LLaVA 架構

本文的主要目標是有效利用預先訓練的 LLM 和視覺模型的功能。網路架構如圖 1 所示。本文選擇 LLaMA 模型作為 LLM fφ(・),因為它的有效性已經在幾個開源的純語言 instruction-tuning 工作中得到了證明。

熔岩羊駝LLaVA來了:像GPT-4一樣可以看圖聊天,無需邀請碼,在線可玩

對於輸入影像X_v,本文使用預先訓練的CLIP 視覺編碼器ViT-L/14 進行處理,得到視覺特徵Z_v=g ( X_v)。實驗中使用的是最後一個 Transformer 層之前和之後的網格特徵。本文使用一個簡單的線性圖層來將影像特徵連接到單字嵌入空間。具體而言,應用可訓練投影矩陣W 將Z_v 轉換為語言嵌入標記H_q,H_q 具有與語言模型中的單字嵌入空間相同的維度:

熔岩羊駝LLaVA來了:像GPT-4一樣可以看圖聊天,無需邀請碼,在線可玩

之後,得到一系列視覺標記H_v。這種簡單投影方案具有輕量、成本低等特點,能夠快速迭代以資料為中心的實驗。也可以考慮連接影像和語言特徵的更複雜(但昂貴)的方案,例如Flamingo 中的門控交叉注意力機制和BLIP-2 中的Q-former,或提供物件層級特徵的其他視覺編碼器,如SAM。

實驗結果

多模態聊天機器人

#研究者開發了一個聊天機器人範例產品,以展示LLaVA 的影像理解和對話能力。為了進一步研究 LLaVA 如何處理視覺輸入,展現其處理指令的能力,研究者首先使用 GPT-4 原始論文中的範例,如表 4 和表 5 所示。使用的 prompt 需要貼合影像內容。為了進行比較,本文引用了其論文中多模態模型 GPT-4 的 prompt 和結果。

熔岩羊駝LLaVA來了:像GPT-4一樣可以看圖聊天,無需邀請碼,在線可玩

熔岩羊駝LLaVA來了:像GPT-4一樣可以看圖聊天,無需邀請碼,在線可玩

令人驚訝的是,儘管LLaVA 是用一個小的多模態指令資料集(約80K 的不重複影像)訓練的,但它在上述這兩個範例上展示了與多模態模型GPT-4 非常相似的推理結果。請注意,這兩張圖像都不在 LLaVA 的資料集範圍內,LLaVA 能夠理解場景並按照問題說明進行回答。相較之下,BLIP-2 和 OpenFlamingo 專注於描述影像,而不是按照使用者指示以適當的方式回答。更多示例如圖 3、圖 4 和圖 5 所示。

熔岩羊駝LLaVA來了:像GPT-4一樣可以看圖聊天,無需邀請碼,在線可玩

熔岩羊駝LLaVA來了:像GPT-4一樣可以看圖聊天,無需邀請碼,在線可玩

熔岩羊駝LLaVA來了:像GPT-4一樣可以看圖聊天,無需邀請碼,在線可玩

#量化評估結果如表 3。

熔岩羊駝LLaVA來了:像GPT-4一樣可以看圖聊天,無需邀請碼,在線可玩

ScienceQA

#ScienceQA 包含21k 個多模態多選問題,涉及3 個主題、26 個主題、127 個類別和379 種技能,具有豐富的領域多樣性。基準資料集分為訓練、驗證和測試部分,分別有 12726、4241 和 4241 個樣本。本文比較了兩種具代表性的方法,包括GPT-3.5 模型(text-davinci-002)和沒有思考鏈(CoT)版本的GPT-3.5 模型,LLaMA-Adapter,以及多模態思考鏈(MM- CoT)[57],這是該資料集上目前的SoTA 方法,結果如表6 所示。

熔岩羊駝LLaVA來了:像GPT-4一樣可以看圖聊天,無需邀請碼,在線可玩

試用回饋

在論文給出的視覺化使用頁面上,機器之心也嘗試輸入了一些圖片和指令。首先是問答裡常見的數人任務。測試表明,數人的時候較小的目標會被忽略,重疊的人也有識別誤差,性別也有識別誤差。

熔岩羊駝LLaVA來了:像GPT-4一樣可以看圖聊天,無需邀請碼,在線可玩

熔岩羊駝LLaVA來了:像GPT-4一樣可以看圖聊天,無需邀請碼,在線可玩

接著,我們嘗試了一些生成任務,例如為圖片起名字,或根據圖片講一個故事。模型輸出的結果還是偏向圖片內容理解,生成方面的能力仍有待加強。

熔岩羊駝LLaVA來了:像GPT-4一樣可以看圖聊天,無需邀請碼,在線可玩

熔岩羊駝LLaVA來了:像GPT-4一樣可以看圖聊天,無需邀請碼,在線可玩

在這張照片中,即便人體有重疊也依然能準確地辨識出人數。從圖片描述和理解能力的角度來看,本文的工作還是有亮點,存在著二創的空間。


#

以上是熔岩羊駝LLaVA來了:像GPT-4一樣可以看圖聊天,無需邀請碼,在線可玩的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

使用ddrescue在Linux上恢復數據 使用ddrescue在Linux上恢復數據 Mar 20, 2024 pm 01:37 PM

DDREASE是一種用於從檔案或區塊裝置(如硬碟、SSD、RAM磁碟、CD、DVD和USB儲存裝置)復原資料的工具。它將資料從一個區塊設備複製到另一個區塊設備,留下損壞的資料區塊,只移動好的資料區塊。 ddreasue是一種強大的恢復工具,完全自動化,因為它在恢復操作期間不需要任何干擾。此外,由於有了ddasue地圖文件,它可以隨時停止和恢復。 DDREASE的其他主要功能如下:它不會覆寫恢復的數據,但會在迭代恢復的情況下填補空白。但是,如果指示工具明確執行此操作,則可以將其截斷。將資料從多個檔案或區塊還原到單

開源!超越ZoeDepth! DepthFM:快速且精確的單目深度估計! 開源!超越ZoeDepth! DepthFM:快速且精確的單目深度估計! Apr 03, 2024 pm 12:04 PM

0.這篇文章乾了啥?提出了DepthFM:一個多功能且快速的最先進的生成式單目深度估計模型。除了傳統的深度估計任務外,DepthFM還展示了在深度修復等下游任務中的最先進能力。 DepthFM效率高,可以在少數推理步驟內合成深度圖。以下一起來閱讀這項工作~1.論文資訊標題:DepthFM:FastMonocularDepthEstimationwithFlowMatching作者:MingGui,JohannesS.Fischer,UlrichPrestel,PingchuanMa,Dmytr

Google狂喜:JAX性能超越Pytorch、TensorFlow!或成GPU推理訓練最快選擇 Google狂喜:JAX性能超越Pytorch、TensorFlow!或成GPU推理訓練最快選擇 Apr 01, 2024 pm 07:46 PM

谷歌力推的JAX在最近的基準測試中表現已經超過Pytorch和TensorFlow,7項指標排名第一。而且測試並不是JAX性能表現最好的TPU上完成的。雖然現在在開發者中,Pytorch依然比Tensorflow更受歡迎。但未來,也許有更多的大型模型會基於JAX平台進行訓練和運行。模型最近,Keras團隊為三個後端(TensorFlow、JAX、PyTorch)與原生PyTorch實作以及搭配TensorFlow的Keras2進行了基準測試。首先,他們為生成式和非生成式人工智慧任務選擇了一組主流

你好,電動Atlas!波士頓動力機器人復活,180度詭異動作嚇到馬斯克 你好,電動Atlas!波士頓動力機器人復活,180度詭異動作嚇到馬斯克 Apr 18, 2024 pm 07:58 PM

波士頓動力Atlas,正式進入電動機器人時代!昨天,液壓Atlas剛「含淚」退出歷史舞台,今天波士頓動力就宣布:電動Atlas上崗。看來,在商用人形機器人領域,波士頓動力是下定決心要跟特斯拉硬剛一把了。新影片放出後,短短十幾小時內,就已經有一百多萬觀看。舊人離去,新角色登場,這是歷史的必然。毫無疑問,今年是人形機器人的爆發年。網友銳評:機器人的進步,讓今年看起來像人類的開幕式動作、自由度遠超人類,但這真不是恐怖片?影片一開始,Atlas平靜地躺在地上,看起來應該是仰面朝天。接下來,讓人驚掉下巴

iPhone上的蜂窩數據網路速度慢:修復 iPhone上的蜂窩數據網路速度慢:修復 May 03, 2024 pm 09:01 PM

在iPhone上面臨滯後,緩慢的行動數據連線?通常,手機上蜂窩互聯網的強度取決於幾個因素,例如區域、蜂窩網絡類型、漫遊類型等。您可以採取一些措施來獲得更快、更可靠的蜂窩網路連線。修復1–強制重啟iPhone有時,強制重啟設備只會重置許多內容,包括蜂窩網路連線。步驟1–只需按一次音量調高鍵並放開即可。接下來,按降低音量鍵並再次釋放它。步驟2–過程的下一部分是按住右側的按鈕。讓iPhone完成重啟。啟用蜂窩數據並檢查網路速度。再次檢查修復2–更改資料模式雖然5G提供了更好的網路速度,但在訊號較弱

特斯拉機器人進廠打工,馬斯克:手的自由度今年將達到22個! 特斯拉機器人進廠打工,馬斯克:手的自由度今年將達到22個! May 06, 2024 pm 04:13 PM

特斯拉機器人Optimus最新影片出爐,已經可以在工廠裡打工了。正常速度下,它分揀電池(特斯拉的4680電池)是這樣的:官方還放出了20倍速下的樣子——在小小的「工位」上,揀啊揀啊揀:這次放出的影片亮點之一在於Optimus在廠子裡完成這項工作,是完全自主的,全程沒有人為的干預。而且在Optimus的視角之下,它還可以把放歪了的電池重新撿起來放置,主打一個自動糾錯:對於Optimus的手,英偉達科學家JimFan給出了高度的評價:Optimus的手是全球五指機器人裡最靈巧的之一。它的手不僅有觸覺

阿里7B多模態文件理解大模型拿下新SOTA 阿里7B多模態文件理解大模型拿下新SOTA Apr 02, 2024 am 11:31 AM

多模態文件理解能力新SOTA!阿里mPLUG團隊發布最新開源工作mPLUG-DocOwl1.5,針對高解析度圖片文字辨識、通用文件結構理解、指令遵循、外部知識引入四大挑戰,提出了一系列解決方案。話不多說,先來看效果。複雜結構的圖表一鍵識別轉換為Markdown格式:不同樣式的圖表都可以:更細節的文字識別和定位也能輕鬆搞定:還能對文檔理解給出詳細解釋:要知道,“文檔理解”目前是大語言模型實現落地的一個重要場景,市面上有許多輔助文檔閱讀的產品,有的主要透過OCR系統進行文字識別,配合LLM進行文字理

超級智能體生命力覺醒!可自我更新的AI來了,媽媽再也不用擔心資料瓶頸難題 超級智能體生命力覺醒!可自我更新的AI來了,媽媽再也不用擔心資料瓶頸難題 Apr 29, 2024 pm 06:55 PM

哭死啊,全球狂煉大模型,一網路的資料不夠用,根本不夠用。訓練模型搞得跟《飢餓遊戲》似的,全球AI研究者,都在苦惱怎麼才能餵飽這群資料大胃王。尤其在多模態任務中,這問題尤其突出。一籌莫展之際,來自人大系的初創團隊,用自家的新模型,率先在國內把「模型生成數據自己餵自己」變成了現實。而且還是理解側和生成側雙管齊下,兩側都能產生高品質、多模態的新數據,對模型本身進行數據反哺。模型是啥?中關村論壇上剛露面的多模態大模型Awaker1.0。團隊是誰?智子引擎。由人大高瓴人工智慧學院博士生高一鑷創立,高

See all articles