目錄
1 三大模型與十大常用演算法【簡介】
1-1 三大模型
1-2 十大常用演算法
#2 python資料分析之Pandas 2-1什麼是pandas
2-2 pandas讀取取檔案
2-3 pandas資料結構
2-3-1 pandas資料結構之DataFrame
2-3 -1 Pandas 資料結構之Series
2-4查詢資料
首頁 後端開發 Python教學 python三大模型與十大常用演算法實例發現

python三大模型與十大常用演算法實例發現

May 12, 2023 pm 09:19 PM
python

    1 三大模型與十大常用演算法【簡介】

    1-1 三大模型

     預測模型:神經網路預測、灰色預測、擬合內插預測(線性迴歸)、時間序列預測、馬可夫鏈預測、微分方程預測、Logistic 模型等等。 應用領域:人口預測、水資源污染成長預測、病毒蔓延預測、競賽獲勝機率
    預測、月收入預測、銷售預測、經濟發展預測等在工業、農業、商業等經濟領域,以及環境、社會和軍事等領域中都有廣泛的應用。

    最佳化模型:規劃模型(目標規劃、線性規劃、非線性規劃、整數規劃、動態規劃)、圖論模型、排隊理論模型、神經網路模型、現代最佳化演算法(遺傳演算法、模擬退火演算法、蟻群演算法、禁忌搜尋演算法)等等。 應用領域:快遞員派送快遞的最短路徑問題、水資源調度優化問題、高速路
    口收費站問題、軍事行動避空偵察的時機和路線選擇、物流選址問題、商區佈局規劃等各領域。

     評估模型:模糊綜合評估法、層次分析法、聚類分析法、主成分分析評估法、
    灰色綜合評估法、人工神經網路評估法等等。 應用領域:某區域水資源評估、水利工程項目風險評估、城市發展程度評估、足球教練評估、籃球隊評估、水生態評估、大壩安全評估、邊坡穩定性評估

    1-2 十大常用演算法

    python三大模型與十大常用演算法實例發現
    python三大模型與十大常用演算法實例發現

    #2 python資料分析之Pandas 2-1什麼是pandas

    #一個開源的Python類別庫:用於資料分析、資料處理、資料視覺化

    • # 高效能

    •  容易使用的資料結構

    • ·容易使用的使用分析工具

    #很方便和其他類別庫一起使用:

    • numpy:用於科學計算

    • scikit-learn:用於機器學習

    2-2 pandas讀取取檔案

    '''
    当使用Pandas做数据分析时,需要读取事先准备好的数据集,这是做数据分析的第一步。
    Pandas提供了多种读取数据的方法:
    read_csv()      用于读取文本文件
    read_excel()    用于读取文本文件
    read_json()     用于读取json文件
    read_sql_query()读取sql语句的
    
    通用流程:
    1-导入库import pandas as pd
    2-找到文件所在位置(绝对路径=全称)(相对路径=和程序在同一个文件夹中的路径的简称)
    3-变量名=pd.读写操作方法(文件路径,具体的筛选条件,...)
    ./  当前路径
    ../ 上一级
    将csv中的数据转换为DataFrame对象是非常便捷。和一般文件读写不一样,它不需要你做打开文件、
    读取文件、关闭文件等操作。相反,您只需要一行代码就可以完成上述所有步骤,并将数据存储在
    DataFrame中。
    
    '''
    import pandas as pd
    # 输入参数:数据输入的路径【可以是文件路径,可以是URL,也可以是实现read方法的任意对象。】
    df = pd.read_csv('s')
    print(df, type(df))
    # Pandas默认使用utf-8读取文件
    print()
    import pandas as pd
    
    lxw = open(r"t.csv", encoding='utf-8')
    print(pd.read_csv(lxw))
    print()
    import os
    
    # 打印当前目录
    print(os.getcwd())
    登入後複製

    相關知識官網連結

    #Pandas需要先讀取表格類型的數據,然後進行分析

    詳細版學習:

    # 1:
    import pandas as pd
    df = pd.read_csv('nba.csv')
    print(df)
    # 2:
    import pandas as pd
    df = pd.read_csv('nba.csv')
    # to_string() 用于返回 DataFrame 类型的数据,如果不使用该函数,则输出结果为数据的前面 5 行和末尾 5 行,中间部分以 ... 代替(如上)
    print(df.to_string())
    # 3:
    import pandas as pd
    
    # 三个字段 name, site, age
    nme = ["Google", "Runoob", "Taobao", "Wiki"]
    st = ["www.google.com", "www.runoob.com", "www.taobao.com", "www.wikipedia.org"]
    ag = [90, 40, 80, 98]
    # 字典
    dict = {'name': nme, 'site': st, 'age': ag}
    df = pd.DataFrame(dict)
    # 保存 dataframe
    print(df.to_csv('site.csv'))
    # 4:
    import pandas as pd
    
    df = pd.read_csv('正解1.csv')
    # head( n ) 方法用于读取前面的 n 行,如果不填参数 n ,默认返回 5 行
    # print(df.head())
    # df.head(50).to_csv('site4.csv')
    df.tail(10).to_csv('site4.csv')
    print("over!")
    # 5:
    import pandas as pd
    df = pd.read_csv('nba.csv')
    # 读取前面 10 行
    print(df.head(10))
    # 6:
    import pandas as pd
    df = pd.read_csv('nba.csv')
    # tail( n ) 方法用于读取尾部的 n 行,如果不填参数 n ,默认返回 5 行,空行各个字段的值返回 NaN
    print(df.tail())
    # 7:
    import pandas as pd
    
    df = pd.read_csv('nba.csv')
    #  读取末尾 10 行
    print(df.tail(10))
    # 8:
    import pandas as pd
    df = pd.read_csv('正解1.csv')
    # info() 方法返回表格的一些基本信息
    print(df.info())
    # non-null 为非空数据,我们可以看到上面的信息中,总共 458 行,College 字段的空值最多
    登入後複製
    • 所有csv、excel檔案可在資源當中自行提用,沒有的可自行補充!

    • 提示:須事先安裝好pandas函式庫。 【終端機安裝指令:pip install pandas】

    import pandas as pd
    lxw = pd.read_csv('nba.csv')
    # 查看前几行数据
    print(lxw.head())
    # 查看索引列
    print(lxw.index)
    # 查看列名列表
    print(lxw.columns)
    # 查看数据的形状(返回行、列数)
    print(lxw.shape)
    # 查看每列的数据类型
    print(lxw.dtypes)
    print()
    # 读取txt文件,自己指定分隔符、列名
    fpath = 'D:\PyCharm\数学建模大赛\数据分析-上-2\Python成绩.csv'
    
    lxw = pd.read_csv(
        fpath,
        sep=',',
        header=None,
        names=['name', 'Python-score']
    )
    # print(lxw)
    lxw.to_csv('Python成绩2.csv')
    # 读取excel文件:
    import pandas as pd
    lxw = pd.read_excel('暑假培训学习计划.xls')
    print(lxw)
    登入後複製

    #註:如果最後這裡【讀取excel檔案]運作出錯,那就在終端機安裝pip install xlrd

    2-3 pandas資料結構

    '''
    1-Series:  一维数据,一行或一列
    【Series是一种类似于一维数组的对象,它由一组数据(不同数据类型)以		    及一组与之相关的数据标签(即索引)组成】
    2-DataFrame:二维数据,整个表格,多行多列
    '''
    import pandas as pd
    # 1-1仅用数据列表即可产生最简单的Series
    lxw = pd.Series([1, 'a', 5.2, 6])
    print(lxw)      # 运行结果解说:左边为索引,右边为数据
    # 获取索引
    print(lxw.index)
    # 获取数据
    print(lxw.values)
    print()
    # 1-2 创建一个具有索引标签的Series
    lxw2 = pd.Series([5, '程序人生6', 666, 5.2], index=['sz', 'gzh', 'jy', 'xy'])
    print(lxw2)
    print(lxw2.index)
    # 写入文件当中
    lxw2.to_csv('gzh.csv')
    print()
    # 1-3 使用过Python字典创建Series
    lxw_ej = {'python': 390, 'java': 90, 'mysql': 90}
    lxw3 = pd.Series(lxw_ej)
    print(lxw3)
    # 1-4 根据标签索引查询数据
    print(lxw3['java'])
    print(lxw2['gzh'])
    print(lxw2[['gzh', 'jy']])
    print(type(lxw2[['gzh', 'jy']]))
    print(lxw[2])
    print(type(lxw[2]))
    print()
    # 2 根据多个字典序列创建dataframe
    lxw_cj = {
        'ps': [86, 92, 88, 82, 80],
        'windows操作系统': [84, 82, 88, 80, 92],
        '网页设计与制作': [92, 88, 97, 98, 83]
    }
    df = pd.DataFrame(lxw_cj)
    
    # print(df)
    # df.to_excel('lxw_cj.xlsx')      # 须提前安装好openxlsx,即pip install openpyxl[可在终端安装]
    print("over!")
    print(df.dtypes)
    print(df.columns)
    print(df.index)
    print()
    # 3-从DataFrame中查询Series
    '''
    ·如果只查询一行、一列的话,那么返回的就是pd.Series
    ·如果查询多行、多列时,返回的就是pd.DataFrame
    
    '''
    # 一列:
    print(df['ps'])
    print(type(df['ps']))
    # 多列:
    print(df[['ps', 'windows操作系统']])
    print(type(df[['ps', 'windows操作系统']]))
    
    print()
    # 一行:
    print(df.loc[1])
    print(type(df.loc[1]))
    # 多行:
    print(df.loc[1:3])
    print(type(df.loc[1:3]))
    登入後複製

    DataFrame 加強

    2-3-1 pandas資料結構之DataFrame
    # DataFrame数据类型
    '''
    DataFrame是Pandas的重要数据结构之一,也是在使用数据分析过程中最常用的结构之一,
    可以这么说,掌握了Dataframe的用法,你就 拥有了学习数据分析的基本能力。
    
    '''
    # 认识Dataframe结构:
    '''
    Dataframe是一个表格型的数据结构,既有行标签,又有列标签,她也被称异构数据表,所谓
    异构,指的是表格中每列的数据类型可以不同,比如可以是字符串、整型或者浮点型等。
    
    Dataframe的每一列数据都可以看成一个Series结构,只不过,Dataframe为每列数据值增加了
    一个标签。因此Dataframe其实是从Series的基础上演变而来,并且他们有相同的标签,在数据分析
    任务中Dataframe的应用非常广泛,因此描述数据的更为清晰、直观。
    
    同Series一样,Dataframe自带行标签索引,默认为“隐式索引”。
    当然,你也可以用“显式索引”的方式来设置行标签。
    
    '''
    # 特点:
    '''
    Dataframe   每一列的标签值允许使用不同的数据类型;
    Dataframe   是表格型的数据结构,具有行和列;
    Dataframe   中的每个数据都可以被修改
    Dataframe   结构的行数、列数允许增加或者删除
    Dataframe   有两个方向的标签轴,分别是行标签和列标签
    Dataframe   可以对行和列执行算术运算
    
    '''
    # DataFrame 构造方法如下:
    
    # pandas.DataFrame( data, index, columns, dtype, copy)
    '''
    data:输入的数据,可以是ndarray, series, list, dict, 标量以及一个Dataframe;
    
    index:行标签,如果没有传递index值,则默认行标签是RangeIndex(0, 1, 2, ..., n)代表data的元素个数;
    
    columns:列标签,如果没有传递columns值,则默认列标签是RangIndex(0, 1, 2, ..., n);
    
    dtype:要强制的数据类型,只允许使用一种数据类型,如果没有,自行推断;
    
    copy:从输入复制数据。对于dict数据, copy=True, 重新复制一份。对于Dataframe或者ndarray输入,类似于copy=False,它用的是试图。
    
    '''
    # 1: 使用普通列表创建
    import pandas as pd
    lxw = [5, 2, 1, 3, 1, 4]
    df = pd.DataFrame(lxw)
    df2 = pd.Series(lxw)
    print(df)
    print(df2)
    print()
    # 2:使用嵌套列表创建
    import pandas as pd
    lxw = [['lxw', 21], ['cw', 23], ['tzs', 22]]
    df3 = pd.DataFrame(lxw, columns=['Name', 'Age'])
    print(df3)
    # 指定数值元素的数据类型为float
    # 注:dtype只能设置一个,设置多个列的数据类型,需要使用其他公式
    print()
    # 分配列标签注意点
    import pandas as pd
    # 分配列标签
    lxw2 = [['lxw', '男', 21, 6666], ['cw', '女', 22, 6520], ['ky', '女', 20, 5200], ['tzs', '男', 22, 6523]]
    # int满足某列特征,会自动使用,不满足,则会自动识别
    df = pd.DataFrame(lxw2, columns=['Name', 'xb', 'age', 'gz'], dtype=int)
    print(df)
    print(df['Name'].dtype)
    print()
    # ~字典创建:
    import pandas as pd
    lxw3 = [{'a': 1, 'b': 2}, {'a': 5, 'b': 8, 'c': 9}]
    df = pd.DataFrame(lxw3, index=['first', 'second'])
    print(df)
    # 注:如果其中某些元素缺失,也就是字典的key无法找到对应的value将使用NaN代替
    print()
    # 使用列表嵌套字典创建一个DataFrame对象
    import pandas as pd
    # lxw3
    df1 = pd.DataFrame(lxw3, index=['first', 'second'], columns=['a', 'b'])
    df2 = pd.DataFrame(lxw3, index=['first', 'second'], columns=['a', 'b2'])
    print(df1)
    print("============================================")
    print(df2)
    登入後複製
    import pandas as pd
    data = [['lxw', 10], ['wink', 12], ['程序人生6', 13]]
    df = pd.DataFrame(data, columns=['Site', 'Age'], dtype=float)
    print(df)
    # 1:使用 ndarrays 创建
    import pandas as pd
    data = {'Site': ['lxw', '程序人生6', 'wink'], 'Age': [10, 12, 13]}
    df = pd.DataFrame(data)
    print(df)
    # 2:还可以使用字典(key/value),其中字典的 key 为列名:
    import pandas as pd
    data = [{'a': 1, 'b': 2}, {'a': 5, 'b': 10, 'c': 20}]
    df = pd.DataFrame(data)
    print(df)
    # 没有对应的部分数据为 NaN
    # 3:Pandas 可以使用 loc 属性返回指定行的数据,如果没有设置索引,第一行索引为 0,第二行索引为 1,以此类推:
    import pandas as pd
    data = {
      "calories": [420, 380, 390],
      "duration": [50, 40, 45]
    }
    # 数据载入到 DataFrame 对象
    df = pd.DataFrame(data)
    # 返回第一行
    print(df.loc[0])
    # 返回第二行
    print(df.loc[1])
    print(df.loc[2])
    # 注意:返回结果其实就是一个 Pandas Series 数据。
    # 也可以返回多行数据,使用 [[ ... ]] 格式,... 为各行的索引,以逗号隔开:
    登入後複製
    2-3 -1 Pandas 資料結構之Series
    # Pandas Series 类似表格中的一个列(column),类似于一维数组,可以保存任何数据类型。
    '''
    Series 由索引(index)和列组成,函数如下:
    pandas.Series( data, index, dtype, name, copy)
    参数说明:
    data:一组数据(ndarray 类型)。
    index:数据索引标签,如果不指定,默认从 0 开始。
    dtype:数据类型,默认会自己判断。
    name:设置名称。
    copy:拷贝数据,默认为 False。
    
    '''
    import pandas as pd
    lxw = [1, 2, 3]
    myvar = pd.Series(lxw)
    print(myvar)
    print()
    # 如果没有指定索引,索引值就从 0 开始,我们可以根据索引值读取数据
    print(myvar[1])
    print()
    import pandas as pd
    lxw = ["Google", "Runoob", "Wiki"]
    myvar2 = pd.Series(lxw, index=['x', 'y', 'z'])
    print(myvar2)
    print()
    # 根据索引值读取数据:
    print(myvar2['y'])
    print()
    # 也可以使用 key/value 对象,类似字典来创建 Series
    import pandas as pd
    lxw = {1: "Google", 2: "Runoob", 3: "Wiki"}
    myvar3 = pd.Series(lxw)
    print(myvar3)
    print()
    # 只需要字典中的一部分数据,只需要指定需要数据的索引即可
    myvar3 = pd.Series(lxw, index=[1, 2])
    print(myvar3)
    print()
    # 设置 Series 名称参数
    import pandas as pd
    lxw = {1: "Google", 2: "Runoob", 3: "Wiki"}
    myvar4 = pd.Series(lxw, index=[1, 3], name="lxw-pro")
    print(myvar4)
    登入後複製

    2-4查詢資料

    # Pandas查询数据的四种方法:
    '''
    1-df.loc方法,根据行、列的标签值查询
    2-df.iloc方法,根据行、列的数字位置查询
    3-df.where方法
    4-df.query方法
    建议:.loc既能查询,又能覆盖写入,强烈推荐!
    
    '''
    # Pandas使用df.loc查询数据的方法:
    '''
    1-使用单个label值查询数据
    2-使用值列表批量查询
    3-使用数值区间进行范围查询
    4-使用条件表达式查询
    5-调用函数查询
    
    '''
    # 注:以上方法,即适用于行,也使用于列
    import pandas as pd
    df = pd.read_csv('sites.csv')
    # print(df.head(10))
    df.set_index('create_dt', inplace=True)
    # print(df.index)
    a = df.index
    # 去重->转为列表->排顺序
    qc = sorted(list(set(a)))
    # print(qc)
    登入後複製
    # 替换掉利润率当中的后缀%
    df.loc[:, 'lrl'] = df['lrl'].str.replace("%", "").astype('int32')   # astype()    对数据类型进行转换
    登入後複製

    astype()相關知識闡述:

    '''
    Python中与数据类型相关函数及属性有如下三个:type/dtype/astype
    type()    返回参数的数据类型    
    dtype    返回数组中元素的数据类型    
    astype()    对数据类型进行转换    
    你可以使用 .astype() 方法在不同的数值类型之间相互转换。a.astype(int).dtype # 将 a 的数值类型从 float64 转换为 int
    '''
    登入後複製

    這裡運行的話,就會報錯:


    python三大模型與十大常用演算法實例發現

    後面上網查找解決類似的問題,一番查找之後,終於解決問題

    # 替换掉利润率当中的后缀%df['lrl'] = df['lrl'].map(lambda x: x.rstrip('%'))print(df)
    登入後複製

    運作效果如下:

    python三大模型與十大常用演算法實例發現

    # 查询数据类型print(df.dtypes)# 打印文件前几行print(df.head())
    登入後複製

    2-4-1 使用單一label值查詢資料

    print(df.loc['2016-12-02', 'yye'])   # 得到指定时间里相对应的的单个值
    登入後複製

    執行結果如下:
    python三大模型與十大常用演算法實例發現

    # 得到指定时间内相对应的的一个Seriesprint(df.loc['2016-11-30', ['sku_cost_prc', 'sku_sale_prc']])
    登入後複製

    執行結果如下:
    python三大模型與十大常用演算法實例發現

    2-4-2使用值清單批次查詢

    # 得到Seriesprint(df.loc[['2016-12-05', '2016-12-31'], 'sku_sale_prc'])
    登入後複製

    執行結果如下:
    提示:圖有點長,故只截取了部分
    python三大模型與十大常用演算法實例發現

    # 得到DataFrameprint(df.loc[['2016-12-08', '2016-12-12'], ['sku_cnt', 'sku_sale_prc']])
    登入後複製

    運行部分結果如下:
    python三大模型與十大常用演算法實例發現

    ##2 -4-3 使用數值區間進行範圍查詢

    # 行index按区间:print(df.loc['2016-12-02': '2016-12-08'], ['yye'])
    登入後複製

    运行部分结果如下:
    python三大模型與十大常用演算法實例發現

    # 列index按区间:print(df.loc['2016-12-12', 'yye': 'lrl'])
    登入後複製

    运行部分结果如下:
    python三大模型與十大常用演算法實例發現

    # 行和列都按区间查询:print(df.loc['2016-11-30': '2016-12-02', 'sku_cnt': 'lrl'])
    登入後複製

    运行部分结果如下:
    python三大模型與十大常用演算法實例發現

    2-4-4 使用条件表达式查询

    # 简单条件查询,营业额低于3的列表print(df.loc[df[&#39;yye&#39;] < 3, :])# 可观察营业额的boolean条件print(df[&#39;yye&#39;] < 3)
    登入後複製
    # 复杂条件查询:print(df.loc[(df[&#39;yye&#39;] < 5) & (df[&#39;yye&#39;] > 2) & (df[&#39;sku_cnt&#39;] > 1), :])
    登入後複製

    运行部分结果如下:
    python三大模型與十大常用演算法實例發現

    # 再次观察这里的boolean条件print((df[&#39;yye&#39;] < 5) & (df[&#39;yye&#39;] > 2) & (df[&#39;sku_cnt&#39;] > 1))
    登入後複製

    运行部分结果如下:
    python三大模型與十大常用演算法實例發現

    2-4-5 调用函数查询

    # 直接写lambda表达式print(df.loc[lambda df: (df[&#39;yye&#39;] < 4) & (df[&#39;yye&#39;] > 2), :])
    登入後複製

    运行部分如果如下:
    python三大模型與十大常用演算法實例發現

    # 函数式编程的本质:# 函数本身可以像变量一样传递def my_query(df):    return df.index.str.startswith(&#39;2016-12-08&#39;)print(df.loc[my_query, :])
    登入後複製

    遇到的问题:

    1、虽说三大模型十大算法【简介】讲的很是明确,可在网上要查询相关模型或者算法还是很杂乱的,不是很清楚自己适合那一版本。
    2、学习pandas过程当中遇到查询数据时遇【替换掉利润率当中的后缀%】 出现差错,后面通过网上查询解决问题。

    以上是python三大模型與十大常用演算法實例發現的詳細內容。更多資訊請關注PHP中文網其他相關文章!

    本網站聲明
    本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

    熱AI工具

    Undresser.AI Undress

    Undresser.AI Undress

    人工智慧驅動的應用程序,用於創建逼真的裸體照片

    AI Clothes Remover

    AI Clothes Remover

    用於從照片中去除衣服的線上人工智慧工具。

    Undress AI Tool

    Undress AI Tool

    免費脫衣圖片

    Clothoff.io

    Clothoff.io

    AI脫衣器

    Video Face Swap

    Video Face Swap

    使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

    熱工具

    記事本++7.3.1

    記事本++7.3.1

    好用且免費的程式碼編輯器

    SublimeText3漢化版

    SublimeText3漢化版

    中文版,非常好用

    禪工作室 13.0.1

    禪工作室 13.0.1

    強大的PHP整合開發環境

    Dreamweaver CS6

    Dreamweaver CS6

    視覺化網頁開發工具

    SublimeText3 Mac版

    SublimeText3 Mac版

    神級程式碼編輯軟體(SublimeText3)

    PHP和Python:解釋了不同的範例 PHP和Python:解釋了不同的範例 Apr 18, 2025 am 12:26 AM

    PHP主要是過程式編程,但也支持面向對象編程(OOP);Python支持多種範式,包括OOP、函數式和過程式編程。 PHP適合web開發,Python適用於多種應用,如數據分析和機器學習。

    在PHP和Python之間進行選擇:指南 在PHP和Python之間進行選擇:指南 Apr 18, 2025 am 12:24 AM

    PHP適合網頁開發和快速原型開發,Python適用於數據科學和機器學習。 1.PHP用於動態網頁開發,語法簡單,適合快速開發。 2.Python語法簡潔,適用於多領域,庫生態系統強大。

    Python vs. JavaScript:學習曲線和易用性 Python vs. JavaScript:學習曲線和易用性 Apr 16, 2025 am 12:12 AM

    Python更適合初學者,學習曲線平緩,語法簡潔;JavaScript適合前端開發,學習曲線較陡,語法靈活。 1.Python語法直觀,適用於數據科學和後端開發。 2.JavaScript靈活,廣泛用於前端和服務器端編程。

    PHP和Python:深入了解他們的歷史 PHP和Python:深入了解他們的歷史 Apr 18, 2025 am 12:25 AM

    PHP起源於1994年,由RasmusLerdorf開發,最初用於跟踪網站訪問者,逐漸演變為服務器端腳本語言,廣泛應用於網頁開發。 Python由GuidovanRossum於1980年代末開發,1991年首次發布,強調代碼可讀性和簡潔性,適用於科學計算、數據分析等領域。

    vs code 可以在 Windows 8 中運行嗎 vs code 可以在 Windows 8 中運行嗎 Apr 15, 2025 pm 07:24 PM

    VS Code可以在Windows 8上運行,但體驗可能不佳。首先確保系統已更新到最新補丁,然後下載與系統架構匹配的VS Code安裝包,按照提示安裝。安裝後,注意某些擴展程序可能與Windows 8不兼容,需要尋找替代擴展或在虛擬機中使用更新的Windows系統。安裝必要的擴展,檢查是否正常工作。儘管VS Code在Windows 8上可行,但建議升級到更新的Windows系統以獲得更好的開發體驗和安全保障。

    visual studio code 可以用於 python 嗎 visual studio code 可以用於 python 嗎 Apr 15, 2025 pm 08:18 PM

    VS Code 可用於編寫 Python,並提供許多功能,使其成為開發 Python 應用程序的理想工具。它允許用戶:安裝 Python 擴展,以獲得代碼補全、語法高亮和調試等功能。使用調試器逐步跟踪代碼,查找和修復錯誤。集成 Git,進行版本控制。使用代碼格式化工具,保持代碼一致性。使用 Linting 工具,提前發現潛在問題。

    notepad 怎麼運行python notepad 怎麼運行python Apr 16, 2025 pm 07:33 PM

    在 Notepad 中運行 Python 代碼需要安裝 Python 可執行文件和 NppExec 插件。安裝 Python 並為其添加 PATH 後,在 NppExec 插件中配置命令為“python”、參數為“{CURRENT_DIRECTORY}{FILE_NAME}”,即可在 Notepad 中通過快捷鍵“F6”運行 Python 代碼。

    vscode 擴展是否是惡意的 vscode 擴展是否是惡意的 Apr 15, 2025 pm 07:57 PM

    VS Code 擴展存在惡意風險,例如隱藏惡意代碼、利用漏洞、偽裝成合法擴展。識別惡意擴展的方法包括:檢查發布者、閱讀評論、檢查代碼、謹慎安裝。安全措施還包括:安全意識、良好習慣、定期更新和殺毒軟件。

    See all articles