現在的數據科學比賽提供的數據量越來越大,動不動幾十個G,甚至上百G,這就要考驗機器性能和數據處理能力。
Python中的pandas是大家常用的資料處理工具,能應付較大資料集(千萬行級別),但當資料量達到十億百億行級別,pandas處理起來就有點力不從心了,可以說非常的慢。
這裡面會有電腦記憶體等效能的因素,但pandas本身的資料處理機制(依賴記憶體)也限制了它處理大數據的能力。
當然pandas可以透過chunk分批讀取數據,但這樣的劣勢在於數據處理較複雜,每一步分析都會消耗記憶體和時間。
下面用pandas讀取3.7個G的資料集(hdf5格式),該資料集共有4列、1億行,並且計算第一行的平均值。我的電腦CPU是i7-8550U,記憶體8G,看看這個載入和運算過程需要花費多少時間。
資料集:
使用pandas讀取並計算:
pip就可以安裝。
有時候我們需要對資料進行各種各樣的轉換、篩選、計算等,pandas的每一步處理都會消耗內存,而且時間成本高。除非說使用鍊式處理,但那樣過程就很不清晰。
vaex則全過程都是零記憶體。因為它的處理過程只是產生expression(表達式),表達式是邏輯表示,不會執行,只有到了最後的生成結果階段才會執行。而且整個過程資料是串流,不會產生記憶體積壓。
可以看到上面有篩選和計算兩個過程,都沒有複製內存,這裡採用了延遲計算,也就是惰性機制。如果每個過程都真實計算,消耗記憶體不說,單是時間成本就很大。
vaex的統計計算函數:
vaex還可以進行快速視覺化展示,即使是數百億的數據集,依然能秒出圖。
vaex視覺化函數:
vaex有點類似spark和pandas的結合體,數據量越大越能體現它的優勢。只要你的硬碟能裝下多大數據,它就能快速分析這些數據。
vaex還在快速發展中,整合了越來越多pandas的功能,它在github上的star數是5k,成長潛力巨大。
附:hdf5資料集產生程式碼(4列1億行資料)
import pandas as pd import vaex df = pd.DataFrame(np.random.rand(100000000,4),columns=['col_1','col_2','col_3','col_4']) df.to_csv('example.csv',index=False) vaex.read('example.csv',convert='example1.hdf5')
#注意這裡不要用pandas直接產生hdf5,其格式會與vaex不相容。
以上是Python Vaex如何實現快速分析100G大數據量的詳細內容。更多資訊請關注PHP中文網其他相關文章!