一文解讀自動駕駛關鍵技術困難
美國汽車工程師協會根據汽車智慧化程度將自動駕駛分為L0-L5共6個等級:
-
L0為無自動化(No Automation , NA),即傳統汽車,駕駛員執行所有的操作任務,例如轉向、制動、加速、減速或泊車等;
-
L1為駕駛輔助(Driving Assistant, DA),即能為駕駛員提供駕駛預警或輔助等,例如對方向盤或加速減速中的一項操作提供支持,其餘由駕駛員操作;
-
L2為部分自動化(Partial Automation,PA),車輛對方向盤和加減速中的多項操作提供駕駛,駕駛員負責其他駕駛操作;
-
L3為條件自動化(Conditional Automation,CA),即由自動駕駛系統完成大部分駕駛操作,駕駛者需要集中註意力以備不時之需;
-
L4為高度自動化(High Automation,HA),由車輛完成所有駕駛操作,駕駛員不需要集中註意力,但限定道路和環境條件;
- L5為完全自動化(Full Automation, FA),在任何道路和環境條件下,由自動駕駛系統完成所有的駕駛操作,駕駛員不需要集中註意力。
#自動駕駛汽車的軟硬體架構如圖2所示,主要分為環境認知層、決策規劃層、控制層和執行層。環境認(感)知層主要透過光達、毫米波雷達、超音波雷達、車載攝影機、夜視系統、GPS、陀螺儀等感測器取得車輛所處環境資訊和車輛狀態信息,具體來說包括:車道線偵測、紅綠燈辨識、交通識別牌辨識、行人偵測、車輛偵測、障礙物辨識和車輛定位等;決策規劃層則分為任務規劃、行為規劃和軌跡規劃,依照設定的路線規劃、所處的環境和車輛自身狀態等規劃下一步具體行駛任務(車道維持、換道、跟車、超車、避撞等)、行為(加速、減速、轉彎、煞車等)及路徑(行車軌跡);控制層及執行層則基於車輛動力學系統模型對車輛驅動、煞車、轉向等進行控制,使車輛跟隨所製定的行車軌跡。
自動駕駛技術涉及較多的關鍵技術,本文主要介紹環境感知技術、高精度定位技術、決策與規劃技術和控制與執行技術。
01 環境感知技術
環境感知指對於環境的場景理解能力,例如障礙物的類型、道路標誌及標線、行車車輛的偵測、交通資訊等資料的語言分類。定位是對感知結果的後處理,透過定位功能從而幫助車輛了解其相對於所處環境的位置。環境感知需要透過感測器獲取大量的周圍環境訊息,確保對車輛周圍環境的正確理解,並基於此做出相應的規劃和決策。
自動駕駛車輛常用的環境感知感測器包括:攝影機、光達、毫米波雷達、紅外線和超音波雷達等。攝影機是自動駕駛車輛最常用、最簡單且最接近人眼成像原理的環境感知感測器。透過即時拍攝車輛周圍的環境,採用CV技術對所拍攝影像進行分析,實現車輛周圍的車輛和行人偵測以及交通標誌辨識等功能。
相機的主要優點在於其高解析度、成本低。但在夜晚、雨雪霧霾等惡劣天氣下,攝影機的表現會迅速下降。另外攝影機所能觀察的距離有限,不擅長於遠距離觀察。
毫米波雷達也是自動駕駛車輛常用的一種感測器,毫米波雷達是指工作在毫米波段(波長1-10 mm ,頻域30-300GHz)的雷達,其基於ToF技術(Time of Flight)對目標物體進行偵測。毫米波雷達向外界連續發送毫米波訊號,並接收目標返回的訊號,根據訊號發出與接收之間的時間差確定目標與車輛之間的距離。因此,毫米波雷達主要用於避免汽車與周圍物體發生碰撞,如盲點偵測、避障輔助、停車輔助、自適應巡航等。毫米波雷達的抗干擾能力強,對降雨、沙塵、煙霧等離子的穿透能力比雷射和紅外線強很多,可全天候工作。但其也具有訊號衰減大、容易受到建築物、人體等的阻擋,傳輸距離較短,解析度不高,難以成像等不足。
雷射雷達也是透過ToF技術來確定目標位置與距離的。光達是透過發射雷射光束來實現對目標的探測,其探測精度和靈敏度更高,探測範圍更廣,但光達更容易受到空氣中雨雪霧霾等的干擾,其高成本也是限制其應用的主要原因。車載雷射雷達依發射雷射光束的數量可分為單線、4線、8線、16線和64線雷射雷達。可以透過下面這個表格(表1),比較主流感測器的優勢與不足。
自動駕駛環境感知通常採用「弱感知超強智慧」與「強感知強智慧」兩大技術路線。其中「弱感知 超強智慧」技術是指主要依賴攝影機與深度學習技術實現環境感知,而不依賴雷射雷達。這種技術認為人類靠一雙眼睛就可以開車,那麼車子也可以靠攝影機來看清周圍環境。如果超強智能暫時難以達到,為實現無人駕駛,那就需要增強感知能力,這就是所謂的「強感知 強智能」技術路線。
相比「弱感知 超強智慧」技術路線,「強感知 強智慧」技術路線的最大特徵就是增加了雷射雷達這個感測器,從而大幅提高感知能力。特斯拉採用「弱智能 超強智慧」技術路線,而GoogleWaymo、百度Apollo、Uber、福特汽車等人工智慧企業、旅遊公司、傳統車企都採用「強感知 強智慧」技術路線。
02 高精度定位技術
#定位的目的是取得自動駕駛車輛相對於外界環境的精確位置,是自動駕駛車輛必備的基礎。在複雜的地市道路行駛,定位精度要求誤差不超過10 cm。例如:只有準確知道車輛與路口的距離,才能進行更精確的預判與準備;只有準確對車輛進行定位,才能判斷車輛所處的車道。若定位誤差較高,嚴重時會造成交通完全事故。
GPS是目前最廣泛採用的定位方法,GPS精度越高,GPS感測器的價格也越昂貴。但目前商用GPS技術定位精度遠遠不夠,其精度只有公尺級且容易受到隧道遮蔽、訊號延遲等因素的干擾。為了解決這個問題,Qualcomm開發了基於視覺增強的高精度定位(VEPP)技術,該技術透過融合GNSS全球導航、攝影機、IMU慣性導航和輪速感測器等多個汽車部件的信息,透過各個感測器之間的相互校準和數據融合,實現精確到車道線的全球即時定位。
03 決策與規劃技術
決策規劃是自動駕駛的關鍵部分之一,它首先是融合多感測器信息,然後根據駕駛需求進行任務決策,接著能夠在避開存在的障礙物前提之下,透過一些特定的約束條件,規劃出兩點之間多條可以選擇的安全路徑,並在這些路徑當中選擇一條最優的路徑,作為車輛行駛軌跡,那就是規劃。依照劃分的層面不同,可以分為全局規劃和局部規劃兩種,全局規劃是由獲取到的地圖信息,規劃出一條在特定條件之下的無碰撞最優路徑。例如,從上海到北京有許多條路,規劃出一條作為行車路線即為全局規劃。
如柵格法、可視圖法、拓樸法、自由空間法、神經網路法等靜態路徑規劃演算法。局部規劃的則是根據全局的規劃,在一些局部環境資訊的基礎之上,能夠避免碰撞一些未知的障礙物,最終達到目的目標點的過程。例如,在全局規劃好的上海到北京的那條路線上會有其他車輛或障礙物,想要避過這些障礙物或車輛,需要轉向調整車道,這就是局部路徑規劃。局部路徑規劃的方法包括:人工位勢場法、向量域直方圖法、虛擬力場法、遺傳演算法等動態路徑規劃演算法等。
決策規劃層是自主駕駛系統,智慧性的直接體現,對車輛的行駛安全性和整車起到了決定性的作用,常見的決策規劃體系結構,有分層遞進式,反應式,以及二者混合式。
分層遞進體系結構,就是一個串聯繫統的結構,在這個系統當中,智慧駕駛系統的各模組之間次序分明,上一個模組的輸出即為下一模組的輸入,因此又稱為感知規劃行動結構。但這種結構可靠性並不高,一旦某個模組出現軟體或硬體故障,整個資訊流就會受到影響,整個系統很有可能發生崩潰,甚至處於癱瘓狀態。
反應式體系結構採用並聯的結構,控制層都可以直接基於感測器的輸入進行決策,因此它所產生的動作就是感測數據直接作用的一個結果,可以突顯感知動作的特點,適用於完全陌生的環境。反應式體系結構中的許多行為主要涉及成為一個簡單的特殊任務,所以感覺規劃控制可以緊密的結合在一塊,佔用的儲存空間並不大,因而可以產生快速的響應,實時性比較強,同時每一層只需要負責系統的某一個行為,整個系統可以方便靈活的實現低層次到高層次的一個過渡,而且如若其中一個模組出現了預料之外的故障,剩下的層次,仍然可以產生有意義的動作,系統的穩健性得到了很大的提高,困難在於,由於系統執行動作的靈活性,需要特定的協調機制來解決各個控制迴路,同意執行機構爭奪之間的衝突,以便得到有意義的結果。
分層遞階式系統的一個結構和反應式體系的結構,都各自有優劣,都難以單獨的滿足行駛環境複雜多變的使用要求,所以越來越多的行業人士開始研究混合式的體系結構,將兩者的優點進行有效的結合,在全局規劃的層次上生成面向目標定義的分層式遞階行為,在局部規劃的層次上就生成目標導向的反應式體系的行為。
04 控制與執行技術
自動駕駛的控制核心技術就是車輛的縱向控制,橫向控制,縱向控制及車輛的驅動和製動控制,而橫向控制的就是方向盤角度的調整以及輪胎力的控制,實現了縱向和橫向自動控制,就可以按給定目標和約束自動控制車運行。
車輛依照縱向控制是在行車速度方向上的控制,即車速以及本車與前後車或障礙物距離的自動控制。巡航控制和緊急煞車控制都是典型的自動駕駛縱向控制案例。這類控制問題可歸結為對馬達驅動、引擎、傳動和煞車系統的控制。各種馬達-引擎-傳動模型、汽車運行模型和煞車過程模型與不同的控制器演算法結合,構成了各種各樣的縱向控制模式。
車輛的橫向控制就是指垂直於運動方向的控制,目標是控制汽車自動保持期望的行車路線,並在不同的車速、載重、風阻、路況下有很好的乘坐舒適和穩定。車輛橫向控制主要有兩種基本設計方法,一種是基於駕駛員模擬的方法(一種是使用用較簡單的動力學模型和駕駛員操縱規則設計控制器;另一種是用駕駛員操縱過程的資料訓練控制器獲取控制演算法);另一種是給予汽車橫向運動力學模型的控制方法(需要建立精確的汽車橫向運動模型。典型模型如單軌模型,該模型認為汽車左右兩側特性相同)
05 總結
除上述介紹的環境感知、精準定位、決策規劃和控制執行之外,自動駕駛汽車還涉及高精度地圖、V2X、自動駕駛汽車測試等關鍵技術。自動駕駛技術是人工智慧、高性能晶片、通訊技術、感測器技術、車輛控制技術、大數據技術等多領域技術的結合體,落地技術難度高。除此之外,自動駕駛技術落地,還要建立符合自動駕駛要求的基礎交通設施,並考慮自動駕駛的法律法規等。
以上是一文解讀自動駕駛關鍵技術困難的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

熱門話題

寫在前面&筆者的個人理解三維Gaussiansplatting(3DGS)是近年來在顯式輻射場和電腦圖形學領域出現的一種變革性技術。這種創新方法的特點是使用了數百萬個3D高斯,這與神經輻射場(NeRF)方法有很大的不同,後者主要使用隱式的基於座標的模型將空間座標映射到像素值。 3DGS憑藉其明確的場景表示和可微分的渲染演算法,不僅保證了即時渲染能力,而且引入了前所未有的控制和場景編輯水平。這將3DGS定位為下一代3D重建和表示的潛在遊戲規則改變者。為此我們首次系統性地概述了3DGS領域的最新發展與關

昨天面試被問到了是否做過長尾相關的問題,所以就想著簡單總結一下。自動駕駛長尾問題是指自動駕駛汽車中的邊緣情況,即發生機率較低的可能場景。感知的長尾問題是目前限制單車智慧自動駕駛車輛運行設計域的主要原因之一。自動駕駛的底層架構和大部分技術問題已經解決,剩下的5%的長尾問題,逐漸成了限制自動駕駛發展的關鍵。這些問題包括各種零碎的場景、極端的情況和無法預測的人類行為。自動駕駛中的邊緣場景"長尾"是指自動駕駛汽車(AV)中的邊緣情況,邊緣情況是發生機率較低的可能場景。這些罕見的事件

0.寫在前面&&個人理解自動駕駛系統依賴先進的感知、決策和控制技術,透過使用各種感測器(如相機、光達、雷達等)來感知周圍環境,並利用演算法和模型進行即時分析和決策。這使得車輛能夠識別道路標誌、檢測和追蹤其他車輛、預測行人行為等,從而安全地操作和適應複雜的交通環境。這項技術目前引起了廣泛的關注,並認為是未來交通領域的重要發展領域之一。但是,讓自動駕駛變得困難的是弄清楚如何讓汽車了解周圍發生的事情。這需要自動駕駛系統中的三維物體偵測演算法可以準確地感知和描述周圍環境中的物體,包括它們的位置、

StableDiffusion3的论文终于来了!这个模型于两周前发布,采用了与Sora相同的DiT(DiffusionTransformer)架构,一经发布就引起了不小的轰动。与之前版本相比,StableDiffusion3生成的图质量有了显著提升,现在支持多主题提示,并且文字书写效果也得到了改善,不再出现乱码情况。StabilityAI指出,StableDiffusion3是一个系列模型,其参数量从800M到8B不等。这一参数范围意味着该模型可以在许多便携设备上直接运行,从而显著降低了使用AI

軌跡預測在自動駕駛中承擔著重要的角色,自動駕駛軌跡預測是指透過分析車輛行駛過程中的各種數據,預測車輛未來的行駛軌跡。作為自動駕駛的核心模組,軌跡預測的品質對於下游的規劃控制至關重要。軌跡預測任務技術堆疊豐富,需熟悉自動駕駛動/靜態感知、高精地圖、車道線、神經網路架構(CNN&GNN&Transformer)技能等,入門難度很高!許多粉絲期望能夠盡快上手軌跡預測,少踩坑,今天就為大家盤點下軌跡預測常見的一些問題和入門學習方法!入門相關知識1.預習的論文有沒有切入順序? A:先看survey,p

原文標題:SIMPL:ASimpleandEfficientMulti-agentMotionPredictionBaselineforAutonomousDriving論文連結:https://arxiv.org/pdf/2402.02519.pdf程式碼連結:https://github.com/HKUST-Aerial-Robotics/SIMPLobotics單位論文想法:本文提出了一種用於自動駕駛車輛的簡單且有效率的運動預測基線(SIMPL)。與傳統的以代理為中心(agent-cent

寫在前面&出發點端到端的範式使用統一的框架在自動駕駛系統中實現多任務。儘管這種範式具有簡單性和清晰性,但端到端的自動駕駛方法在子任務上的表現仍然遠遠落後於單任務方法。同時,先前端到端方法中廣泛使用的密集鳥瞰圖(BEV)特徵使得擴展到更多模態或任務變得困難。這裡提出了一種稀疏查找為中心的端到端自動駕駛範式(SparseAD),其中稀疏查找完全代表整個駕駛場景,包括空間、時間和任務,無需任何密集的BEV表示。具體來說,設計了一個統一的稀疏架構,用於包括檢測、追蹤和線上地圖繪製在內的任務感知。此外,重

最近一個月由於眾所周知的一些原因,非常密集地和業界的各種老師同學進行了交流。交流中必不可免的一個話題自然是端到端與火辣的特斯拉FSDV12。想藉此機會,整理當下這個時刻的一些想法和觀點,供大家參考和討論。如何定義端到端的自動駕駛系統,應該期望端到端解決什麼問題?依照最傳統的定義,端到端的系統指的是一套系統,輸入感測器的原始訊息,直接輸出任務關心的變數。例如,在影像辨識中,CNN相對於傳統的特徵提取器+分類器的方法就可以稱之為端到端。在自動駕駛任務中,輸入各種感測器的資料(相機/LiDAR
