目錄
1.url encode加密
2.unicode 加密
3.Base64 加密
4.MD5
5.PBKDF2
6.SHA
7.HMAC
9.3DES
10.AES
11.RC4
12.Rabbit
13.RSA
首頁 後端開發 Python教學 Python中常見的加密解密演算法有哪些

Python中常見的加密解密演算法有哪些

May 16, 2023 pm 05:25 PM
python

1.url encode加密

简介:当url地址含有中文,或者参数有中文的时候,这个算是很正常了,但是把这样的url作为参数传递的时候(最常见的callback),需要把一些中文甚至'/'做一下编码转换。

# -*- coding: utf-8 -*-
# @Time    : 2022/9/29 10:43
# @Author  : lzc
# @Email   : hybpjx@163.com
# @File    : utilsMiddlewares.py
# @cnblogs : https://www.cnblogs.com/zichliang/
# @Software: PyCharm
 
import urllib.parse
 
 
text = "我爱吃鸡腿"
s = urllib.parse.quote(text)
print(s) # %E6%88%91%E7%88%B1%E5%90%83%E9%B8%A1%E8%85%BF
u = urllib.parse.unquote(s)
print(u) #我爱吃鸡腿
登入後複製

2.unicode 加密

其实这应该不算一种加密 更多的应该算是一种编码与解码,但是由于运用很广泛 我也加进去了

# -*- coding: utf-8 -*-
# @Time    : 2023/2/28 10:43
# @Author  : lzc
# @Email   : hybpjx@163.com
# @File    : utilsMiddlewares.py
# @cnblogs : https://www.cnblogs.com/zichliang/
# @Software: PyCharm
 
str1 = "你好"
 
# 编码
enStr1 = str1.encode('unicode-escape').decode()
print(enStr1) # \u4f60\u597d
 
# 解码
deStr1 = enStr1.encode().decode('unicode-escape')
print(deStr1) # 你好
登入後複製

3.Base64 加密

简介:Base64 是一种用 64 个字符来表示任意二进制数据的方法。

# -*- coding: utf-8 -*-
# @Time    : 2022/9/29 10:43
# @Author  : lzc
# @Email   : hybpjx@163.com
# @File    : utilsMiddlewares.py
# @cnblogs : https://www.cnblogs.com/zichliang/
# @Software: PyCharm
 
import base64
 
 
def base64_encode(text):
    encode_data = base64.b64encode(text.encode())
    return encode_data
 
 
def base64_decode(encode_data):
    decode_data = base64.b64decode(encode_data)
    return decode_data
 
 
if __name__ == '__main__':
    text = 'I love Python!'
    encode_data = base64_encode(text)
    decode_data = base64_decode(encode_data)
    print('Base64 编码:', encode_data)
    print('Base64 解码:', decode_data)
    
    # Base64 编码: b'SSBsb3ZlIFB5dGhvbiE='
# Base64 解码: b'I love Python!'
登入後複製

4.MD5

简介:全称 MD5 消息摘要算法(英文名称:MD5 Message-Digest Algorithm),又称哈希算法、散列算法,由美国密码学家罗纳德·李维斯特(Ronald Linn Rivest)设计,于 1992 年作为 RFC 1321 被公布,用以取代 MD4 算法。摘要算法属于单向加密,这意味着用摘要算法处理后的明文无法被解密。

摘要算法的第二个特点密文是固定长度的,它通过一个函数,把任意长度的数据转换为一个长度固定的数据串(通常用16进制的字符串表示)。之所以叫摘要算法,它的算法就是提取明文重要的特征。使用摘要算法后,两个不同的明文可能会生成相同的密文,但这种情况非常罕见。

# -*- coding: utf-8 -*-
# @Time    : 2022/9/29 10:43
# @Author  : lzc
# @Email   : hybpjx@163.com
# @File    : utilsMiddlewares.py
# @cnblogs : https://www.cnblogs.com/zichliang/
# @Software: PyCharm
 
import hashlib
 
 
def md5_test1():
    md5 = hashlib.new('md5', 'I love python!'.encode('utf-8'))
    print(md5.hexdigest())
 
 
def md5_test2():
    md5 = hashlib.md5()
    md5.update('I love '.encode('utf-8'))
    md5.update('python!'.encode('utf-8'))
    print(md5.hexdigest())
 
 
if __name__ == '__main__':
    md5_test1()  # 21169ee3acd4a24e1fcb4322cfd9a2b8
    md5_test2()  # 21169ee3acd4a24e1fcb4322cfd9a2b8
登入後複製

5.PBKDF2

简介:英文名称:Password-Based Key Derivation Function 2,PBKDF2 是 RSA 实验室的公钥加密标准(PKCS)系列的一部分,
2017 年发布的 RFC 8018 (PKCS #5 v2.1)推荐使用 PBKDF2 进行密码散列。

PBKDF2 将伪随机函数(例如 HMAC),把明文和一个盐值(salt)作为输入参数,然后进行重复运算,并最终产生密钥,如果重复的次数足够大,破解的成本就会变得很高。

# -*- coding: utf-8 -*-
# @Time    : 2022/9/29 10:43
# @Author  : lzc
# @Email   : hybpjx@163.com
# @File    : utilsMiddlewares.py
# @cnblogs : https://www.cnblogs.com/zichliang/
# @Software: PyCharm
 
import binascii
from Cryptodome.Hash import SHA1
from Cryptodome.Protocol.KDF import PBKDF2
 
 
text = 'I love Python!'
salt = b'43215678'
result = PBKDF2(text,  salt, count=10, hmac_hash_module=SHA1)
result = binascii.hexlify(result)
print(result)
# b'7fee6e8350cfe96314c76aaa6e853a50'
登入後複製

6.SHA

简介:全称安全哈希算法(英文名称:Secure Hash Algorithm),主要适用于数字签名标准(Digital Signature Standard DSS)里面定义的数字签名算法(
Digital Signature Algorithm DSA),SHA 通常指 SHA 家族的五个算法,分别是 SHA-1、SHA-224、SHA-256、SHA-384、SHA-512,后四者有时并称为 SHA-2,SHA 是比 MD5 更安全一点的摘要算法,MD5 的密文是 32 位,而 SHA-1 是 40 位,版本越强,密文越长,代价是速度越慢。

# -*- coding: utf-8 -*-
# @Time    : 2022/9/29 10:43
# @Author  : lzc
# @Email   : hybpjx@163.com
# @File    : utilsMiddlewares.py
# @cnblogs : https://www.cnblogs.com/zichliang/
# @Software: PyCharm
 
import hashlib
 
 
def sha1_test1():
    sha1 = hashlib.new('sha1', 'I love python!'.encode('utf-8'))
    print(sha1.hexdigest())
 
 
def sha1_test2():
    sha1 = hashlib.sha1()
    sha1.update('I love python!'.encode('utf-8'))
    print(sha1.hexdigest())
 
 
if __name__ == '__main__':
    sha1_test1()  # 23c02b203bd2e2ca19da911f1d270a06d86719fb
    sha1_test2()  # 23c02b203bd2e2ca19da911f1d270a06d86719fb
登入後複製

7.HMAC

简介:全称散列消息认证码、密钥相关的哈希运算消息认证码(英文名称:Hash-based Message Authentication Code 或者 Keyed-hash Message Authentication Code),于 1996 年提出,1997 年作为 RFC 2104 被公布,HMAC 加密算法是一种安全的基于加密 Hash函数和共享密钥的消息认证协议,它要求通信双方共享密钥 key、约定算法、对报文进行 Hash 运算,形成固定长度的认证码。通信双方通过认证码的校验来确定报文的合法性。

import hmac
# -*- coding: utf-8 -*-
# @Time    : 2022/9/29 10:43
# @Author  : lzc
# @Email   : hybpjx@163.com
# @File    : utilsMiddlewares.py
# @cnblogs : https://www.cnblogs.com/zichliang/
# @Software: PyCharm
 
def hmac_test1():
    message = b'I love python!'
    key = b'secret'
    md5 = hmac.new(key, message, digestmod='MD5')
    print(md5.hexdigest())
    
    
def hmac_test2():
    key = 'secret'.encode('utf8')
    sha1 = hmac.new(key, digestmod='sha1')
    sha1.update('I love '.encode('utf8'))
    sha1.update('Python!'.encode('utf8'))
    print(sha1.hexdigest())
        
        
if __name__ == '__main__':
    hmac_test1()  # 9c503a1f852edcc3526ea56976c38edf
    hmac_test2()  # 2d8449a4292d4bbeed99ce9ea570880d6e19b61a
登入後複製

8.DES

简介:全称数据加密标准(英文名称:Data Encryption Standard),加密与解密使用同一密钥,属于对称加密算法,1977 年被美国联邦政府的国家标准局确定为联邦资料处理标准(FIPS),DES 是一个分组加密算法,使用 56 位的密钥(一般认为密钥是 64 位,但是密钥的每个第 8 位设置为奇偶校验位,所以实际上有效位只有 56 位),由于 56 位密钥长度相对较短,所以 DES 是不安全的,现在基本上已被更高级的加密标准 AES 取代。

mode 支持:CBC,CFB,CTR,CTRGladman,ECB,OFB 等。

padding 支持:ZeroPadding,NoPadding,AnsiX923,Iso10126,Iso97971,Pkcs7 等。

# -*- coding: utf-8 -*-
# @Time    : 2022/9/29 10:43
# @Author  : lzc
# @Email   : hybpjx@163.com
# @File    : utilsMiddlewares.py
# @cnblogs : https://www.cnblogs.com/zichliang/
# @Software: PyCharm
 
import binascii
# 加密模式 CBC,填充方式 PAD_PKCS5
from pyDes import des, CBC, PAD_PKCS5
 
 
def des_encrypt(key, text, iv):
    k = des(key, CBC, iv, pad=None, padmode=PAD_PKCS5)
    en = k.encrypt(text, padmode=PAD_PKCS5)
    return binascii.b2a_hex(en)
 
 
def des_decrypt(key, text, iv):
    k = des(key, CBC, iv, pad=None, padmode=PAD_PKCS5)
    de = k.decrypt(binascii.a2b_hex(text), padmode=PAD_PKCS5)
    return de
 
 
if __name__ == '__main__':
    secret_key = '12345678'   # 密钥
    text = 'I love Python!'   # 加密对象
    iv = secret_key           # 偏移量
    secret_str = des_encrypt(secret_key, text, iv)
    print('加密字符串:', secret_str)
    clear_str = des_decrypt(secret_key, secret_str, iv)
    print('解密字符串:', clear_str)
    
    
    # 加密字符串: b'302d3abf2421169239f829b38a9545f1'
    # 解密字符串: b'I love Python!'
登入後複製

9.3DES

简介:全称三重数据加密算法(英文名称:Triple Data Encryption Standard、Triple Data Encryption Algorithm、TDES、TDEA),是对称加密算法中的一种。70 年代初由 IBM 研发,后 1977 年被采纳为数据加密标准,它相当于是对每个数据块应用三次 DES 加密算法。由于计算机运算能力的增强,原版 DES 密码的密钥长度变得容易被暴力破解;3DES 即是设计用来提供一种相对简单的方法,即通过增加 DES 的密钥长度来避免破解,所以严格来说 3DES 不是设计一种全新的块密码算法。

mode 支持:CBC,CFB,CTR,CTRGladman,ECB,OFB 等。

padding 支持:ZeroPadding,NoPadding,AnsiX923,Iso10126,Iso97971,Pkcs7 等。

# -*- coding: utf-8 -*-
# @Time    : 2022/9/29 10:43
# @Author  : lzc
# @Email   : hybpjx@163.com
# @File    : utilsMiddlewares.py
# @cnblogs : https://www.cnblogs.com/zichliang/
# @Software: PyCharm
 
from Cryptodome.Cipher import DES3
from Cryptodome import Random
 
 
# 需要补位,str不是16的倍数那就补足为16的倍数
def add_to_16(value):
    while len(value) % 16 != 0:
        value += '\0'
    return str.encode(value)
 
 
def des_encrypt(key, text, iv):
    # 加密模式 OFB
    cipher_encrypt = DES3.new(add_to_16(key), DES3.MODE_OFB, iv)
    encrypted_text = cipher_encrypt.encrypt(text.encode("utf-8"))
    return encrypted_text
 
 
def des_decrypt(key, text, iv):
    # 加密模式 OFB
    cipher_decrypt = DES3.new(add_to_16(key), DES3.MODE_OFB, iv)
    decrypted_text = cipher_decrypt.decrypt(text)
    return decrypted_text
 
 
if __name__ == '__main__':
    key = '12345678'            # 密钥,16 位
    text = 'I love Python!'     # 加密对象
    iv = Random.new().read(DES3.block_size)  # DES3.block_size == 8
    secret_str = des_encrypt(key, text, iv)
    print('加密字符串:', secret_str)
    clear_str = des_decrypt(key, secret_str, iv)
    print('解密字符串:', clear_str)
 
 
# 加密字符串: b'\xa5\x8a\xd4R\x99\x16j\xba?vg\xf2\xb6\xa9'
# 解密字符串: b'I love Python!'
登入後複製

10.AES

简介:全称高级加密标准(英文名称:Advanced Encryption Standard),在密码学中又称 Rijndael 加密法,由美国国家标准与技术研究院 (NIST)于 2001 年发布,并在 2002 年成为有效的标准。这个标准用来替代原先的 DES,已经被多方分析且广为全世界所使用,它本身只有一个密钥,即用来实现加密,也用于解密。

mode 支持:CBC,CFB,CTR,CTRGladman,ECB,OFB 等。

padding 支持:ZeroPadding,NoPadding,AnsiX923,Iso10126,Iso97971,Pkcs7 等。

# -*- coding: utf-8 -*-
# @Time    : 2022/9/29 10:43
# @Author  : lzc
# @Email   : hybpjx@163.com
# @File    : utilsMiddlewares.py
# @cnblogs : https://www.cnblogs.com/zichliang/
# @Software: PyCharm
 
import base64
from Cryptodome.Cipher import AES
 
 
# 需要补位,str不是16的倍数那就补足为16的倍数
def add_to_16(value):
    while len(value) % 16 != 0:
        value += '\0'
    return str.encode(value)
 
 
# 加密方法
def aes_encrypt(key, t, iv):
    aes = AES.new(add_to_16(key), AES.MODE_CBC, add_to_16(iv))  # 初始化加密器
    encrypt_aes = aes.encrypt(add_to_16(t)) # 先进行 aes 加密
    # 执行加密并转码返回 bytes
    encrypted_text = str(base64.encodebytes(encrypt_aes), encoding='utf-8')  
    return encrypted_text
 
 
# 解密方法
def aes_decrypt(key, t, iv):
    # 初始化加密器
    aes = AES.new(add_to_16(key), AES.MODE_CBC, add_to_16(iv))     
    # 优先逆向解密 base64 成 bytes   
    base64_decrypted = base64.decodebytes(t.encode(encoding='utf-8')) 
    # 执行解密密并转码返回str 
    decrypted_text = str(aes.decrypt(base64_decrypted), encoding='utf-8').replace('\0', '')  
    return decrypted_text
 
 
if __name__ == '__main__':
    secret_key = '12345678'   # 密钥
    text = 'I love Python!'   # 加密对象
    iv = secret_key           # 初始向量
    encrypted_str = aes_encrypt(secret_key, text, iv)
    print('加密字符串:', encrypted_str)
    decrypted_str = aes_decrypt(secret_key, encrypted_str, iv)
    print('解密字符串:', decrypted_str)
 
 
# 加密字符串: lAVKvkQh+GtdNpoKf4/mHA==
# 解密字符串: I love Python!
登入後複製

11.RC4

简介:英文名称:Rivest Cipher 4,也称为 ARC4 或 ARCFOUR,是一种流加密算法,密钥长度可变。它加解密使用相同的密钥,因此也属于对称加密算法。
RC4 是有线等效加密(WEP)中采用的加密算法,也曾经是 TLS 可采用的算法之一,该算法的速度可以达到 DES 加密的 10 倍左右,且具有很高级别的非线性,
虽然它在软件方面的简单性和速度非常出色,但在 RC4 中发现了多个漏洞,它特别容易受到攻击,RC4 作为一种老旧的验证和加密算法易于受到黑客攻击,现在逐渐不推荐使用了。

# -*- coding: utf-8 -*-
# @Time    : 2022/9/29 10:43
# @Author  : lzc
# @Email   : hybpjx@163.com
# @File    : utilsMiddlewares.py
# @cnblogs : https://www.cnblogs.com/zichliang/
# @Software: PyCharm
 
import base64
from Cryptodome.Cipher import ARC4
 
 
def rc4_encrypt(key, t):
    enc = ARC4.new(key.encode('utf8'))
    res = enc.encrypt(t.encode('utf-8'))
    res = base64.b64encode(res)
    return res
 
 
def rc4_decrypt(key, t):
    data = base64.b64decode(t)
    enc = ARC4.new(key.encode('utf8'))
    res = enc.decrypt(data)
    return res
 
 
if __name__ == "__main__":
    secret_key = '12345678'   # 密钥
    text = 'I love Python!'   # 加密对象
    encrypted_str = rc4_encrypt(secret_key, text)
    print('加密字符串:', encrypted_str)
    decrypted_str = rc4_decrypt(secret_key, encrypted_str)
    print('解密字符串:', decrypted_str)
 
 
# 加密字符串: b'8tNVu3/U/veJR2KgyBw='
# 解密字符串: b'I love Python!'
登入後複製

12.Rabbit

简介:Rabbit 加密算法是一个高性能的流密码加密方式,2003 年首次被提出,它从 128 位密钥和 64 位初始向量(iv)创建一个密钥流。

目前没有找到有第三方库可以直接实现 Rabbit 算法,

13.RSA

简介:英文名称:Rivest-Shamir-Adleman,是 1977 年由罗纳德·李维斯特(Ron Rivest)、阿迪·萨莫尔(Adi Shamir)和伦纳德·阿德曼(Leonard Adleman)一起提出的,RSA 就是他们三人姓氏开头字母拼在一起组成的,RSA 加密算法是一种非对称加密算法。

在公开密钥加密和电子商业中RSA被广泛使用。它被普遍认为是目前比较优秀的公钥方案之一。

RSA是第一个能同时用于加密和数字签名的算法,它能够抵抗到目前为止已知的所有密码攻击。

# -*- coding: utf-8 -*-
# @Time    : 2022/9/29 10:43
# @Author  : lzc
# @Email   : hybpjx@163.com
# @File    : utilsMiddlewares.py
# @cnblogs : https://www.cnblogs.com/zichliang/
# @Software: PyCharm
 
import rsa
 
 
def rsa_encrypt(pu_key, t):
    # 公钥加密
    rsa = rsa.encrypt(t.encode("utf-8"), pu_key)
    return rsa
 
 
def rsa_decrypt(pr_key, t):
    # 私钥解密
    rsa = rsa.decrypt(t, pr_key).decode("utf-8")
    return rsa
 
 
if __name__ == "__main__":
    public_key, private_key = rsa.newkeys(512)   # 生成公钥、私钥
    print('公钥:', public_key)
    print('私钥:', private_key)
    text = 'I love Python!'  # 加密对象
    encrypted_str = rsa_encrypt(public_key, text)
    print('加密字符串:', encrypted_str)
    decrypted_str = rsa_decrypt(private_key, encrypted_str)
    print('解密字符串:', decrypted_str)
 
'''
公钥: PublicKey(7636479066127060956100056267701318377455704072072698049978592945665550579944731953431504993757594103617537700972424661030900303472123028864161050235168613, 65537)
私钥: PrivateKey(7636479066127060956100056267701318377455704072072698049978592945665550579944731953431504993757594103617537700972424661030900303472123028864161050235168613, 65537, 3850457767980968449796700480128630632818465005441846698224554128042451115530564586537997896922067523638756079019054611200173122138274839877369624069360253, 4713180694194659323798858305046043997526301456820208338158979730140812744181638767, 1620238976946735819854194349514460863335347861649166352709029254680140139)
加密字符串: b"\x1aaeps\xa0c}\xb6\xcf\xa3\xb0\xbb\xedA\x7f}\x03\xdc\xd5\x1c\x9b\xdb\xda\xf9q\x80[=\xf5\x91\r\xd0'f\xce\x1f\x01\xef\xa5\xdb3\x96\t0qIxF\xbd\x11\xd6\xb25\xc5\xe1pM\xb4M\xc2\xd4\x03\xa6"
解密字符串: I love Python!
'''
模块 Cryptodome:
# -*- coding: utf-8 -*-
# @Time    : 2022/9/29 10:43
# @Author  : lzc
# @Email   : hybpjx@163.com
# @File    : utilsMiddlewares.py
# @cnblogs : https://www.cnblogs.com/zichliang/
# @Software: PyCharm
 
import base64
from Cryptodome.PublicKey import RSA
from Cryptodome.Cipher import PKCS1_v1_5
 
 
data = "cKK8B2rWwfwWeXhz"
public_key = "MFwwDQYJKoZIhvcNAQEBBQADSwAwSAJBAM1xhOWaThSMpfxFsjV5YaWOFHt+6RvS+zH2Pa47VVr8PkZYnRaaKKy2MYBuEh7mZfM/R1dUXTgu0gp6VTNeNQkCAwEAAQ=="
rsa_key = RSA.import_key(base64.b64decode(public_key))  # 导入读取到的公钥
cipher = PKCS1_v1_5.new(rsa_key)                        # 生成对象
cipher_text = base64.b64encode(cipher.encrypt(data.encode(encoding="utf-8")))
print(cipher_text)
登入後複製

以上是Python中常見的加密解密演算法有哪些的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

PHP和Python:解釋了不同的範例 PHP和Python:解釋了不同的範例 Apr 18, 2025 am 12:26 AM

PHP主要是過程式編程,但也支持面向對象編程(OOP);Python支持多種範式,包括OOP、函數式和過程式編程。 PHP適合web開發,Python適用於多種應用,如數據分析和機器學習。

在PHP和Python之間進行選擇:指南 在PHP和Python之間進行選擇:指南 Apr 18, 2025 am 12:24 AM

PHP適合網頁開發和快速原型開發,Python適用於數據科學和機器學習。 1.PHP用於動態網頁開發,語法簡單,適合快速開發。 2.Python語法簡潔,適用於多領域,庫生態系統強大。

Python vs. JavaScript:學習曲線和易用性 Python vs. JavaScript:學習曲線和易用性 Apr 16, 2025 am 12:12 AM

Python更適合初學者,學習曲線平緩,語法簡潔;JavaScript適合前端開發,學習曲線較陡,語法靈活。 1.Python語法直觀,適用於數據科學和後端開發。 2.JavaScript靈活,廣泛用於前端和服務器端編程。

PHP和Python:深入了解他們的歷史 PHP和Python:深入了解他們的歷史 Apr 18, 2025 am 12:25 AM

PHP起源於1994年,由RasmusLerdorf開發,最初用於跟踪網站訪問者,逐漸演變為服務器端腳本語言,廣泛應用於網頁開發。 Python由GuidovanRossum於1980年代末開發,1991年首次發布,強調代碼可讀性和簡潔性,適用於科學計算、數據分析等領域。

vs code 可以在 Windows 8 中運行嗎 vs code 可以在 Windows 8 中運行嗎 Apr 15, 2025 pm 07:24 PM

VS Code可以在Windows 8上運行,但體驗可能不佳。首先確保系統已更新到最新補丁,然後下載與系統架構匹配的VS Code安裝包,按照提示安裝。安裝後,注意某些擴展程序可能與Windows 8不兼容,需要尋找替代擴展或在虛擬機中使用更新的Windows系統。安裝必要的擴展,檢查是否正常工作。儘管VS Code在Windows 8上可行,但建議升級到更新的Windows系統以獲得更好的開發體驗和安全保障。

visual studio code 可以用於 python 嗎 visual studio code 可以用於 python 嗎 Apr 15, 2025 pm 08:18 PM

VS Code 可用於編寫 Python,並提供許多功能,使其成為開發 Python 應用程序的理想工具。它允許用戶:安裝 Python 擴展,以獲得代碼補全、語法高亮和調試等功能。使用調試器逐步跟踪代碼,查找和修復錯誤。集成 Git,進行版本控制。使用代碼格式化工具,保持代碼一致性。使用 Linting 工具,提前發現潛在問題。

notepad 怎麼運行python notepad 怎麼運行python Apr 16, 2025 pm 07:33 PM

在 Notepad 中運行 Python 代碼需要安裝 Python 可執行文件和 NppExec 插件。安裝 Python 並為其添加 PATH 後,在 NppExec 插件中配置命令為“python”、參數為“{CURRENT_DIRECTORY}{FILE_NAME}”,即可在 Notepad 中通過快捷鍵“F6”運行 Python 代碼。

vscode 擴展是否是惡意的 vscode 擴展是否是惡意的 Apr 15, 2025 pm 07:57 PM

VS Code 擴展存在惡意風險,例如隱藏惡意代碼、利用漏洞、偽裝成合法擴展。識別惡意擴展的方法包括:檢查發布者、閱讀評論、檢查代碼、謹慎安裝。安全措施還包括:安全意識、良好習慣、定期更新和殺毒軟件。

See all articles