python OpenCV怎麼使用背景分離法
理論
背景分離(BS)是一種透過使用靜態相機來產生前景遮罩(包含屬於場景中的移動物件像素的二進位影像)的常用技術
顧名思義,BS計算前景掩碼,在當前幀與背景模型之間執行減法運算,其中包含場景的靜態部分,考慮到所觀察場景的特徵,可以將其視為背景的所有內容。
背景建模包含兩個主要步驟:
#1.背景初始化
2.背景更新第一步,計算背景的初始模型,在第二步驟中,更新模型以適應場景中可能的變化
實作
讓使用者選擇處理影片檔案或影像序列。在此範例中,將使用cv2.BackgroundSubtractorMOG2
產生前景遮罩。
from __future__ import print_function import cv2 import argparse parser = argparse.ArgumentParser( description='This program shows how to use background subtraction methods provided by OpenCV. You can process both videos and images.') parser.add_argument('--input', type=str, help='Path to a video or a sequence of image.', default='vtest.avi') parser.add_argument('--algo', type=str, help='Background subtraction method (KNN, MOG2).', default='MOG2') args = parser.parse_args() ## [create] # create Background Subtractor objects if args.algo == 'MOG2': backSub = cv2.createBackgroundSubtractorMOG2() else: backSub = cv2.createBackgroundSubtractorKNN() ## [create] ## [capture] capture = cv2.VideoCapture(args.input) if not capture.isOpened(): print('Unable to open: ' + args.input) exit(0) ## [capture] while True: ret, frame = capture.read() if frame is None: break ## [apply] # update the background model fgMask = backSub.apply(frame) ## [apply] ## [display_frame_number] # get the frame number and write it on the current frame cv2.rectangle(frame, (10, 2), (100,20), (255,255,255), -1) cv2.putText(frame, str(capture.get(cv2.CAP_PROP_POS_FRAMES)), (15, 15), cv2.FONT_HERSHEY_SIMPLEX, 0.5 , (0,0,0)) ## [display_frame_number] ## [show] # show the current frame and the fg masks cv2.imshow('Frame', frame) cv2.imshow('FG Mask', fgMask) ## [show] keyboard = cv2.waitKey(30) if keyboard == 'q' or keyboard == 27: break
程式碼分析
分析上述程式碼的主要部分:
#cv2.BackgroundSubtractor
物件將用於產生前景掩碼碼。在此範例中,使用了預設參數,但是也可以在create
函數中宣告特定的參數。
# create Background Subtractor objects KNN or MOG2 if args.algo == 'MOG2': backSub = cv2.createBackgroundSubtractorMOG2() else: backSub = cv2.createBackgroundSubtractorKNN()
cv2.VideoCapture
物件用於讀取輸入視訊或輸入影像序列
capture = cv2.VideoCapture(args.input) if not capture.isOpened: print('Unable to open: ' + args.input) exit(0)
每幀都用於計算前景遮罩和更新背景。如果要變更用於更新背景模型的學習率,可以透過將參數傳遞給
apply
方法來設定特定的學習率
# update the background model fgMask = backSub.apply(frame)
目前訊框編號可以從
cv2.Videocapture
物件中擷取,並在目前影格的左上角沖壓。使用白色矩形來反白顯示黑色框架號
# get the frame number and write it on the current frame cv2.rectangle(frame, (10, 2), (100,20), (255,255,255), -1) cv2.putText(frame, str(capture.get(cv2.CAP_PROP_POS_FRAMES)), (15, 15), cv2.FONT_HERSHEY_SIMPLEX, 0.5 , (0,0,0))
顯示目前的輸入幀和結果
# show the current frame and the fg masks cv2.imshow('Frame', frame) cv2.imshow('FG Mask', fgMask)
以上是python OpenCV怎麼使用背景分離法的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

PHP主要是過程式編程,但也支持面向對象編程(OOP);Python支持多種範式,包括OOP、函數式和過程式編程。 PHP適合web開發,Python適用於多種應用,如數據分析和機器學習。

PHP適合網頁開發和快速原型開發,Python適用於數據科學和機器學習。 1.PHP用於動態網頁開發,語法簡單,適合快速開發。 2.Python語法簡潔,適用於多領域,庫生態系統強大。

在 Sublime Text 中運行 Python 代碼,需先安裝 Python 插件,再創建 .py 文件並編寫代碼,最後按 Ctrl B 運行代碼,輸出會在控制台中顯示。

Python更適合初學者,學習曲線平緩,語法簡潔;JavaScript適合前端開發,學習曲線較陡,語法靈活。 1.Python語法直觀,適用於數據科學和後端開發。 2.JavaScript靈活,廣泛用於前端和服務器端編程。

PHP起源於1994年,由RasmusLerdorf開發,最初用於跟踪網站訪問者,逐漸演變為服務器端腳本語言,廣泛應用於網頁開發。 Python由GuidovanRossum於1980年代末開發,1991年首次發布,強調代碼可讀性和簡潔性,適用於科學計算、數據分析等領域。

Golang在性能和可擴展性方面優於Python。 1)Golang的編譯型特性和高效並發模型使其在高並發場景下表現出色。 2)Python作為解釋型語言,執行速度較慢,但通過工具如Cython可優化性能。

在 Visual Studio Code(VSCode)中編寫代碼簡單易行,只需安裝 VSCode、創建項目、選擇語言、創建文件、編寫代碼、保存並運行即可。 VSCode 的優點包括跨平台、免費開源、強大功能、擴展豐富,以及輕量快速。

在 Notepad 中運行 Python 代碼需要安裝 Python 可執行文件和 NppExec 插件。安裝 Python 並為其添加 PATH 後,在 NppExec 插件中配置命令為“python”、參數為“{CURRENT_DIRECTORY}{FILE_NAME}”,即可在 Notepad 中通過快捷鍵“F6”運行 Python 代碼。
