目錄
辨別式模型
生成式模型
總結
首頁 科技週邊 人工智慧 生成式模型與辨別式模型

生成式模型與辨別式模型

May 19, 2023 pm 09:31 PM
分類模型 辨別式模型 生成式模型

分類模型可分為兩大類:生成式模型與辨別式模型。本文解釋了這兩種模型類型之間的區別,並討論了每種方法的優缺點。

生成式模型與辨別式模型

辨別式模型

辨別式模型是一種能夠學習輸入資料和輸出標籤之間關係的模型,它透過學習輸入資料的特徵來預測輸出標籤。在分類問題中,我們的目標是將每個輸入向量x分配給標籤y。判別模型試圖直接學習將輸入向量對應到標籤的函數f(x)。這些模型可以進一步分為兩個子類型:

分類器試圖找到f(x)而不使用任何機率分佈。這些分類器直接為每個樣本輸出一個標籤,而不提供類別的機率估計。這些分類器通常稱為確定性分類器或無分佈分類器。此類分類器的例子包括k近鄰、決策樹和SVM。

分類器首先從訓練資料中學習後驗類機率P(y = k|x),並根據這些機率將一個新樣本x分配給其中一個類別(通常是後驗機率最高的類)。

這些分類器通常被稱為機率分類器。這種分類器的例子包括邏輯迴歸和在輸出層中使用sigmoid或softmax函數的神經網路。

在所有條件相同的情況下,我一般都使用機率分類器而不是確定性分類器,因為這個分類器提供了關於將樣本分配給特定類別的置信度的額外資訊。

一般的判別式模型包括:

  • 邏輯迴歸(Logistic Regression,LR)
  • 支援向量機(Support Vector Machine,SVM)
  • 決策樹(Decision Tree,DT)

生成式模型

生成式模型在估計類別機率之前學習輸入的分佈。生成式模型是一種能夠學習資料生成過程的模型,它可以學習輸入資料的機率分佈,並產生新的資料樣本。

更具體地說生成模型首先從訓練資料估計類別的條件密度P(x|y = k)和先驗類別機率P(y = k)。他們試圖了解每個分類的數據是如何產生的。

接著利用貝葉斯定理估計後驗類別機率:

生成式模型與辨別式模型

#貝葉斯規則的分母可以用分子中出現的變數來表示:

生成式模型與辨別式模型

生成式模型也可以先學習輸入和標籤P(x, y)的聯合分佈,然後將其歸一化以獲得後驗機率P(y = k |x)。一旦我們有了後驗機率,我們就可以用它們將一個新的樣本x分配給其中一個類別(通常是後驗機率最高的類別)。

例如,考慮一個圖像分類任務中,我們需要區分圖像狗(y = 1)和貓(y = 0)。生成模型首先會建立一個狗 P(x|y = 1) 的模型,以及貓 P(x|y = 0) 的模型。然後在對新圖像進行分類時,它會將其與兩個模型進行匹配,以查看新圖像看起來更像狗還是更像貓。

為生成模型允許我們從學習的輸入分佈P(x|y)中產生新的樣本。所以我們稱之為生成式模型。最簡單的例子是,對於上面的模型我們可以從P(x|y = 1)中取樣來產生新的狗的圖像。

一般的生成模型包括

  • 樸素貝葉斯(Naïve Bayes)
  • 高斯混合模型(GMMs)
  • 隱馬可夫模型(hmm)
  • 線性判別分析(LDA)

深度生成模型(DGMs)結合了生成模型和深度神經網路:

    ##自編碼器(Autoencoder,AE)
  • 生成式對抗網路(Generative Adversarial Network,GAN)
  • 自回歸模型,例如GPT(Generative Pre-trained Transformer)是一種包含數十億參數的自迴歸語言模型。
區別和優缺點

生成式模型和辨別式模型的主要差異在於它們學習的目標不同。生成式模型學習輸入資料的分佈,可以產生新的資料樣本。辨別式模型學習輸入資料和輸出標籤之間的關係,可以預測新的標籤。

生成式模型:

產生模型給了我們更多的信息,因為它們同時學習輸入分佈和類別機率。可以從學習的輸入分佈中產生新的樣本。並且可以處理缺失的數據,因為它們可以在不使用缺失值的情況下估計輸入分佈。但是大多數判別模型要求所有的特徵都存在。

訓練複雜度高,因為生成式模型要建立輸入資料和輸出資料之間的聯合分佈,需要大量的運算和儲存資源。對資料分佈的假設比較強,因為生成式模型要建立輸入資料和輸出資料之間的聯合分佈,需要對資料的分佈進行假設和建模,因此對於複雜的資料分佈,生成式模型在小規模的計算資源上並不適用。

生成模型可以處理多模態數據,因為生成式模型可以建立輸入資料和輸出資料之間的多元聯合分佈,從而能夠處理多模態資料。

辨別式模型:

如果不對資料做一些假設,生成式模型學習輸入分佈P(x|y)在計算上是困難的,例如,如果x由m個二進位特徵組成,為了對P(x|y)建模,我們需要從每個類別的資料中估計2個ᵐ參數(這些參數表示m個特徵的2個ᵐ組合中的每一個的條件機率)。而Naïve Bayes等模型則對特徵進行條件獨立性假設,以減少需要學習的參數數量,因此訓練複雜度低。但是這樣的假設通常會導致生成模型比判別模型表現得更差。

對於複雜的資料分佈和高維資料具有很好的表現,因為辨別式模型可以靈活地對輸入資料和輸出資料之間的映射關係進行建模。

辨別式模型對雜訊資料和缺失資料敏感,因為模型只考慮輸入資料和輸出資料之間的映射關係,不利用輸入資料中的資訊填補缺失值和移除雜訊。

總結

生成式模型和辨別式模型都是機器學習中重要的模型類型,它們各自具有優點和適用場景。在實際應用中,需要根據特定任務的需求選擇合適的模型,並結合混合模型和其他技術手段來提高模型的效能和效果。


以上是生成式模型與辨別式模型的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

最佳AI藝術生成器(免費付款)創意項目 最佳AI藝術生成器(免費付款)創意項目 Apr 02, 2025 pm 06:10 PM

本文回顧了AI最高的藝術生成器,討論了他們的功能,對創意項目的適用性和價值。它重點介紹了Midjourney是專業人士的最佳價值,並建議使用Dall-E 2進行高質量的可定製藝術。

開始使用Meta Llama 3.2 -Analytics Vidhya 開始使用Meta Llama 3.2 -Analytics Vidhya Apr 11, 2025 pm 12:04 PM

Meta的Llama 3.2:多模式和移動AI的飛躍 Meta最近公佈了Llama 3.2,這是AI的重大進步,具有強大的視覺功能和針對移動設備優化的輕量級文本模型。 以成功為基礎

最佳AI聊天機器人比較(Chatgpt,Gemini,Claude&更多) 最佳AI聊天機器人比較(Chatgpt,Gemini,Claude&更多) Apr 02, 2025 pm 06:09 PM

本文比較了諸如Chatgpt,Gemini和Claude之類的頂級AI聊天機器人,重點介紹了其獨特功能,自定義選項以及自然語言處理和可靠性的性能。

頂級AI寫作助理來增強您的內容創建 頂級AI寫作助理來增強您的內容創建 Apr 02, 2025 pm 06:11 PM

文章討論了Grammarly,Jasper,Copy.ai,Writesonic和Rytr等AI最高的寫作助手,重點介紹了其獨特的內容創建功能。它認為Jasper在SEO優化方面表現出色,而AI工具有助於保持音調的組成

向員工出售AI策略:Shopify首席執行官的宣言 向員工出售AI策略:Shopify首席執行官的宣言 Apr 10, 2025 am 11:19 AM

Shopify首席執行官TobiLütke最近的備忘錄大膽地宣布AI對每位員工的基本期望是公司內部的重大文化轉變。 這不是短暫的趨勢。這是整合到P中的新操作範式

AV字節:Meta' llama 3.2,Google的雙子座1.5等 AV字節:Meta' llama 3.2,Google的雙子座1.5等 Apr 11, 2025 pm 12:01 PM

本週的AI景觀:進步,道德考慮和監管辯論的旋風。 OpenAI,Google,Meta和Microsoft等主要參與者已經釋放了一系列更新,從開創性的新車型到LE的關鍵轉變

構建AI代理的前7個代理抹布系統 構建AI代理的前7個代理抹布系統 Mar 31, 2025 pm 04:25 PM

2024年見證了從簡單地使用LLM進行內容生成的轉變,轉變為了解其內部工作。 這種探索導致了AI代理的發現 - 自主系統處理任務和最少人工干預的決策。 Buildin

選擇最佳的AI語音生成器:評論的頂級選項 選擇最佳的AI語音生成器:評論的頂級選項 Apr 02, 2025 pm 06:12 PM

本文評論了Google Cloud,Amazon Polly,Microsoft Azure,IBM Watson和Discript等高級AI語音生成器,重點介紹其功能,語音質量和滿足不同需求的適用性。

See all articles