首頁 > 科技週邊 > 人工智慧 > 繞開算力限制,如何用單GPU微調 LLM?這是一份「梯度累積」演算法教程

繞開算力限制,如何用單GPU微調 LLM?這是一份「梯度累積」演算法教程

WBOY
發布: 2023-05-22 20:25:04
轉載
1012 人瀏覽過

自從大模型變成熱門趨勢後,GPU 就變成了緊俏的物資。很多企業的儲備不一定充足,更不用說個人開發者了。有沒有什麼方法可以更有效率的利用算力訓練模式?

在最近的一篇博客,Sebastian Raschka 介紹了「梯度累積」的方法,能夠在 GPU 記憶體受限時使用更大 batch size 訓練模型,繞過硬體限制。

绕开算力限制,如何用单GPU微调 LLM?这是一份「梯度累积」算法教程

在此之前,Sebastian Raschka 也分享過一篇運用多GPU 訓練策略加速大型語言模型微調的文章,包括模型或tensor sharding 等機制,這些機制將模型權重和計算分佈在不同的設備上,以解決GPU 的記憶體限制。

微調 BLOOM 模型進行分類

假設我們有興趣採用近期預訓練的大型語言模型來處理文字分類等下游任務。那麼,我們可能會選擇使用GPT-3 的開源替代品BLOOM 模型,特別是「僅有」 5.6 億個參數的BLOOM 版本—— 它應該可以毫無問題地融入到傳統GPU 的RAM 中(Google Colab 免費版本擁有15 Gb RAM 的GPU)。

一旦開始,就很可能遇到問題:記憶體會在訓練或微調期間迅速增加。訓練這個模型的唯一方法是讓批次大小為 1(batch size=1)。

绕开算力限制,如何用单GPU微调 LLM?这是一份「梯度累积」算法教程

使用批次大小為 1(batch size=1)為目標分類任務微調 BLOOM 的程式碼如下所示。你也可以在GitHub 專案頁面下載完整程式碼:

https://github.com/rasbt/gradient-accumulation-blog/blob/main/src/1_batchsize-1.py

你可以將此程式碼直接複製並貼上到Google Colab 中,但也必須將隨附的local_dataset_utilities.py 檔案拖放到從該檔案匯入了一些資料集實用程式的同一資料夾中。

<code># pip install torch lightning matplotlib pandas torchmetrics watermark transformers datasets -Uimport osimport os.path as opimport timefrom datasets import load_datasetfrom lightning import Fabricimport torchfrom torch.utils.data import DataLoaderimport torchmetricsfrom transformers import AutoTokenizerfrom transformers import AutoModelForSequenceClassificationfrom watermark import watermarkfrom local_dataset_utilities import download_dataset, load_dataset_into_to_dataframe, partition_datasetfrom local_dataset_utilities import IMDBDatasetdef tokenize_text (batch):return tokenizer (batch ["text"], truncatinotallow=True, padding=True, max_length=1024)def train (num_epochs, model, optimizer, train_loader, val_loader, fabric):for epoch in range (num_epochs):train_acc = torchmetrics.Accuracy (task="multiclass", num_classes=2).to (fabric.device)for batch_idx, batch in enumerate (train_loader):model.train ()### FORWARD AND BACK PROPoutputs = model (batch ["input_ids"],attention_mask=batch ["attention_mask"],labels=batch ["label"]) fabric.backward (outputs ["loss"])### UPDATE MODEL PARAMETERSoptimizer.step ()optimizer.zero_grad ()### LOGGINGif not batch_idx % 300:print (f"Epoch: {epoch+1:04d}/{num_epochs:04d}"f"| Batch {batch_idx:04d}/{len (train_loader):04d}"f"| Loss: {outputs ['loss']:.4f}")model.eval ()with torch.no_grad ():predicted_labels = torch.argmax (outputs ["logits"], 1)train_acc.update (predicted_labels, batch ["label"])### MORE LOGGINGmodel.eval ()with torch.no_grad ():val_acc = torchmetrics.Accuracy (task="multiclass", num_classes=2).to (fabric.device)for batch in val_loader:outputs = model (batch ["input_ids"],attention_mask=batch ["attention_mask"],labels=batch ["label"])predicted_labels = torch.argmax (outputs ["logits"], 1)val_acc.update (predicted_labels, batch ["label"])print (f"Epoch: {epoch+1:04d}/{num_epochs:04d}"f"| Train acc.: {train_acc.compute ()*100:.2f}%"f"| Val acc.: {val_acc.compute ()*100:.2f}%")train_acc.reset (), val_acc.reset ()if __name__ == "__main__":print (watermark (packages="torch,lightning,transformers", pythnotallow=True))print ("Torch CUDA available?", torch.cuda.is_available ())device = "cuda" if torch.cuda.is_available () else "cpu"torch.manual_seed (123)# torch.use_deterministic_algorithms (True)############################# 1 Loading the Dataset##########################download_dataset ()df = load_dataset_into_to_dataframe ()if not (op.exists ("train.csv") and op.exists ("val.csv") and op.exists ("test.csv")):partition_dataset (df)imdb_dataset = load_dataset ("csv",data_files={"train": "train.csv","validation": "val.csv","test": "test.csv",},)############################################ 2 Tokenization and Numericalization#########################################tokenizer = AutoTokenizer.from_pretrained ("bigscience/bloom-560m", max_length=1024)print ("Tokenizer input max length:", tokenizer.model_max_length, flush=True)print ("Tokenizer vocabulary size:", tokenizer.vocab_size, flush=True)print ("Tokenizing ...", flush=True)imdb_tokenized = imdb_dataset.map (tokenize_text, batched=True, batch_size=None)del imdb_datasetimdb_tokenized.set_format ("torch", columns=["input_ids", "attention_mask", "label"])os.environ ["TOKENIZERS_PARALLELISM"] = "false"############################################ 3 Set Up DataLoaders#########################################train_dataset = IMDBDataset (imdb_tokenized, partition_key="train")val_dataset = IMDBDataset (imdb_tokenized, partition_key="validation")test_dataset = IMDBDataset (imdb_tokenized, partition_key="test")train_loader = DataLoader (dataset=train_dataset,batch_size=1,shuffle=True,num_workers=4,drop_last=True,)val_loader = DataLoader (dataset=val_dataset,batch_size=1,num_workers=4,drop_last=True,)test_loader = DataLoader (dataset=test_dataset,batch_size=1,num_workers=2,drop_last=True,)############################################ 4 Initializing the Model#########################################fabric = Fabric (accelerator="cuda", devices=1, precisinotallow="16-mixed")fabric.launch ()model = AutoModelForSequenceClassification.from_pretrained ("bigscience/bloom-560m", num_labels=2)optimizer = torch.optim.Adam (model.parameters (), lr=5e-5)model, optimizer = fabric.setup (model, optimizer)train_loader, val_loader, test_loader = fabric.setup_dataloaders (train_loader, val_loader, test_loader)############################################ 5 Finetuning#########################################start = time.time ()train (num_epochs=1,model=model,optimizer=optimizer,train_loader=train_loader,val_loader=val_loader,fabric=fabric,)end = time.time ()elapsed = end-startprint (f"Time elapsed {elapsed/60:.2f} min")with torch.no_grad ():model.eval ()test_acc = torchmetrics.Accuracy (task="multiclass", num_classes=2).to (fabric.device)for batch in test_loader:outputs = model (batch ["input_ids"],attention_mask=batch ["attention_mask"],labels=batch ["label"])predicted_labels = torch.argmax (outputs ["logits"], 1)test_acc.update (predicted_labels, batch ["label"])print (f"Test accuracy {test_acc.compute ()*100:.2f}%")</code>
登入後複製

作者使用了 Lightning Fabric,因為它可以讓開發者在不同硬體上運行此程式碼時靈活地改變 GPU 數量和多 GPU 訓練策略。它還允許僅透過調整查準率 flag 來啟用混合精度訓練(mixed-precision training)。在這種情況下,混合精度訓練可以將訓練速度提高三倍,並將記憶體需求降低約 25%。

上面展示的主要程式碼都是在主函數(if __name__ == "__main__" 的context)中執行的,即使只使用單一GPU,也建議使用PyTorch 執行環境執行多GPU 訓練。而後,包含在if __name__ == "__main__" 中的以下三個代碼部分負責資料載入:

# 1 載入資料集

# 2 token 化與數值化

# 3 設定資料載入器

第4 節是初始化模型(Initializing the Model)中,然後在第5 節微調(Finetuning)中,呼叫train 函數,這是開始讓事情變得有趣的地方。在 train (...) 函數中,實現了標準的 PyTorch 迴圈。核心訓練循環的註解版本如下所示:

批次大小為1(Batch size=1)的問題是梯度更新將會變得非常混亂和困難,正如下述訓練模型時基於波動的訓練損失和糟糕的測試集性能所看到的:

<code>...torch : 2.0.0lightning : 2.0.0transformers: 4.27.2Torch CUDA available? True...Epoch: 0001/0001 | Batch 23700/35000 | Loss: 0.0969Epoch: 0001/0001 | Batch 24000/35000 | Loss: 1.9902Epoch: 0001/0001 | Batch 24300/35000 | Loss: 0.0395Epoch: 0001/0001 | Batch 24600/35000 | Loss: 0.2546Epoch: 0001/0001 | Batch 24900/35000 | Loss: 0.1128Epoch: 0001/0001 | Batch 25200/35000 | Loss: 0.2661Epoch: 0001/0001 | Batch 25500/35000 | Loss: 0.0044Epoch: 0001/0001 | Batch 25800/35000 | Loss: 0.0067Epoch: 0001/0001 | Batch 26100/35000 | Loss: 0.0468Epoch: 0001/0001 | Batch 26400/35000 | Loss: 1.7139Epoch: 0001/0001 | Batch 26700/35000 | Loss: 0.9570Epoch: 0001/0001 | Batch 27000/35000 | Loss: 0.1857Epoch: 0001/0001 | Batch 27300/35000 | Loss: 0.0090Epoch: 0001/0001 | Batch 27600/35000 | Loss: 0.9790Epoch: 0001/0001 | Batch 27900/35000 | Loss: 0.0503Epoch: 0001/0001 | Batch 28200/35000 | Loss: 0.2625Epoch: 0001/0001 | Batch 28500/35000 | Loss: 0.1010Epoch: 0001/0001 | Batch 28800/35000 | Loss: 0.0035Epoch: 0001/0001 | Batch 29100/35000 | Loss: 0.0009Epoch: 0001/0001 | Batch 29400/35000 | Loss: 0.0234Epoch: 0001/0001 | Batch 29700/35000 | Loss: 0.8394Epoch: 0001/0001 | Batch 30000/35000 | Loss: 0.9497Epoch: 0001/0001 | Batch 30300/35000 | Loss: 0.1437Epoch: 0001/0001 | Batch 30600/35000 | Loss: 0.1317Epoch: 0001/0001 | Batch 30900/35000 | Loss: 0.0112Epoch: 0001/0001 | Batch 31200/35000 | Loss: 0.0073Epoch: 0001/0001 | Batch 31500/35000 | Loss: 0.7393Epoch: 0001/0001 | Batch 31800/35000 | Loss: 0.0512Epoch: 0001/0001 | Batch 32100/35000 | Loss: 0.1337Epoch: 0001/0001 | Batch 32400/35000 | Loss: 1.1875Epoch: 0001/0001 | Batch 32700/35000 | Loss: 0.2727Epoch: 0001/0001 | Batch 33000/35000 | Loss: 0.1545Epoch: 0001/0001 | Batch 33300/35000 | Loss: 0.0022Epoch: 0001/0001 | Batch 33600/35000 | Loss: 0.2681Epoch: 0001/0001 | Batch 33900/35000 | Loss: 0.2467Epoch: 0001/0001 | Batch 34200/35000 | Loss: 0.0620Epoch: 0001/0001 | Batch 34500/35000 | Loss: 2.5039Epoch: 0001/0001 | Batch 34800/35000 | Loss: 0.0131Epoch: 0001/0001 | Train acc.: 75.11% | Val acc.: 78.62%Time elapsed 69.97 minTest accuracy 78.53%</code>
登入後複製

#由於沒有多的GPU 可用於張量分片(tensor sharding),又能做些什麼來訓練具有更大批大小(batch size)的模型呢?

其中一個解決方法就是梯度累積,可以透過它來修改前面提到的訓練循環。

什么是梯度积累?

梯度累积是一种在训练期间虚拟增加批大小(batch size)的方法,当可用的 GPU 内存不足以容纳所需的批大小时,这非常有用。在梯度累积中,梯度是针对较小的批次计算的,并在多次迭代中累积(通常是求和或平均),而不是在每一批次之后更新模型权重。一旦累积梯度达到目标「虚拟」批大小,模型权重就会使用累积梯度进行更新。

参考下面更新的 PyTorch 训练循环:

绕开算力限制,如何用单GPU微调 LLM?这是一份「梯度累积」算法教程

如果将 accumulation_steps 设置为 2,那么 zero_grad () 和 optimizer.step () 将只会每隔一秒调用一次。因此,使用 accumulation_steps=2 运行修改后的训练循环与将批大小(batch size)加倍具有相同的效果。

例如,如果想使用 256 的批大小,但只能将 64 的批大小放入 GPU 内存中,就可以对大小为 64 的四个批执行梯度累积。(处理完所有四个批次后,将获得相当于单个批大小为 256 的累积梯度。)这样能够有效地模拟更大的批大小,而无需更大的 GPU 内存或跨不同设备的张量分片。

虽然梯度累积可以帮助我们训练具有更大批量大小的模型,但它不会减少所需的总计算量。实际上,它有时会导致训练过程略慢一些,因为权重更新的执行频率较低。尽管如此,它却能帮我们解决限制问题,即批大小非常小时导致的更新频繁且混乱。

例如,现在让我们运行上面的代码,批大小为 1,需要 16 个累积步骤(accumulation steps)来模拟批大小等于 16。

输出如下:

<code>...torch : 2.0.0lightning : 2.0.0transformers: 4.27.2Torch CUDA available? True...Epoch: 0001/0001 | Batch 23700/35000 | Loss: 0.0168Epoch: 0001/0001 | Batch 24000/35000 | Loss: 0.0006Epoch: 0001/0001 | Batch 24300/35000 | Loss: 0.0152Epoch: 0001/0001 | Batch 24600/35000 | Loss: 0.0003Epoch: 0001/0001 | Batch 24900/35000 | Loss: 0.0623Epoch: 0001/0001 | Batch 25200/35000 | Loss: 0.0010Epoch: 0001/0001 | Batch 25500/35000 | Loss: 0.0001Epoch: 0001/0001 | Batch 25800/35000 | Loss: 0.0047Epoch: 0001/0001 | Batch 26100/35000 | Loss: 0.0004Epoch: 0001/0001 | Batch 26400/35000 | Loss: 0.1016Epoch: 0001/0001 | Batch 26700/35000 | Loss: 0.0021Epoch: 0001/0001 | Batch 27000/35000 | Loss: 0.0015Epoch: 0001/0001 | Batch 27300/35000 | Loss: 0.0008Epoch: 0001/0001 | Batch 27600/35000 | Loss: 0.0060Epoch: 0001/0001 | Batch 27900/35000 | Loss: 0.0001Epoch: 0001/0001 | Batch 28200/35000 | Loss: 0.0426Epoch: 0001/0001 | Batch 28500/35000 | Loss: 0.0012Epoch: 0001/0001 | Batch 28800/35000 | Loss: 0.0025Epoch: 0001/0001 | Batch 29100/35000 | Loss: 0.0025Epoch: 0001/0001 | Batch 29400/35000 | Loss: 0.0000Epoch: 0001/0001 | Batch 29700/35000 | Loss: 0.0495Epoch: 0001/0001 | Batch 30000/35000 | Loss: 0.0164Epoch: 0001/0001 | Batch 30300/35000 | Loss: 0.0067Epoch: 0001/0001 | Batch 30600/35000 | Loss: 0.0037Epoch: 0001/0001 | Batch 30900/35000 | Loss: 0.0005Epoch: 0001/0001 | Batch 31200/35000 | Loss: 0.0013Epoch: 0001/0001 | Batch 31500/35000 | Loss: 0.0112Epoch: 0001/0001 | Batch 31800/35000 | Loss: 0.0053Epoch: 0001/0001 | Batch 32100/35000 | Loss: 0.0012Epoch: 0001/0001 | Batch 32400/35000 | Loss: 0.1365Epoch: 0001/0001 | Batch 32700/35000 | Loss: 0.0210Epoch: 0001/0001 | Batch 33000/35000 | Loss: 0.0374Epoch: 0001/0001 | Batch 33300/35000 | Loss: 0.0007Epoch: 0001/0001 | Batch 33600/35000 | Loss: 0.0341Epoch: 0001/0001 | Batch 33900/35000 | Loss: 0.0259Epoch: 0001/0001 | Batch 34200/35000 | Loss: 0.0005Epoch: 0001/0001 | Batch 34500/35000 | Loss: 0.4792Epoch: 0001/0001 | Batch 34800/35000 | Loss: 0.0003Epoch: 0001/0001 | Train acc.: 78.67% | Val acc.: 87.28%Time elapsed 51.37 minTest accuracy 87.37%</code>
登入後複製

根据上面的结果,损失的波动比以前小了。此外,测试集性能提升了 10%。由于只迭代了训练集一次,因此每个训练样本只会遇到一次。训练用于 multiple epochs 的模型可以进一步提高预测性能。

你可能还会注意到,这段代码的执行速度也比之前使用的批大小为 1 的代码快。如果使用梯度累积将虚拟批大小增加到 8,仍然会有相同数量的前向传播(forward passes)。然而,由于每八个 epoch 只更新一次模型,因此反向传播(backward passes)会很少,这样可更快地在一个 epoch(训练轮数)内迭代样本。

结论

梯度累积是一种在执行权重更新之前通过累积多个小的批梯度来模拟更大的批大小的技术。该技术在可用内存有限且内存中可容纳批大小较小的情况下提供帮助。

但是,首先请思考一种你可以运行批大小的场景,这意味着可用内存大到足以容纳所需的批大小。在那种情况下,梯度累积可能不是必需的。事实上,运行更大的批大小可能更有效,因为它允许更多的并行性且能减少训练模型所需的权重更新次数。

总之,梯度累积是一种实用的技术,可以用于降低小批大小干扰信息对梯度更新准确性的影响。这是迄今一种简单而有效的技术,可以让我们绕过硬件的限制。

PS:可以让这个运行得更快吗?

没问题。可以使用 PyTorch 2.0 中引入的 torch.compile 使其运行得更快。只需要添加一些 model = torch.compile,如下图所示:

绕开算力限制,如何用单GPU微调 LLM?这是一份「梯度累积」算法教程

GitHub 上提供了完整的脚本。

在这种情况下,torch.compile 在不影响建模性能的情况下又减少了十分钟的训练时间:

<code>poch: 0001/0001 | Batch 26400/35000 | Loss: 0.0320Epoch: 0001/0001 | Batch 26700/35000 | Loss: 0.0010Epoch: 0001/0001 | Batch 27000/35000 | Loss: 0.0006Epoch: 0001/0001 | Batch 27300/35000 | Loss: 0.0015Epoch: 0001/0001 | Batch 27600/35000 | Loss: 0.0157Epoch: 0001/0001 | Batch 27900/35000 | Loss: 0.0015Epoch: 0001/0001 | Batch 28200/35000 | Loss: 0.0540Epoch: 0001/0001 | Batch 28500/35000 | Loss: 0.0035Epoch: 0001/0001 | Batch 28800/35000 | Loss: 0.0016Epoch: 0001/0001 | Batch 29100/35000 | Loss: 0.0015Epoch: 0001/0001 | Batch 29400/35000 | Loss: 0.0008Epoch: 0001/0001 | Batch 29700/35000 | Loss: 0.0877Epoch: 0001/0001 | Batch 30000/35000 | Loss: 0.0232Epoch: 0001/0001 | Batch 30300/35000 | Loss: 0.0014Epoch: 0001/0001 | Batch 30600/35000 | Loss: 0.0032Epoch: 0001/0001 | Batch 30900/35000 | Loss: 0.0004Epoch: 0001/0001 | Batch 31200/35000 | Loss: 0.0062Epoch: 0001/0001 | Batch 31500/35000 | Loss: 0.0032Epoch: 0001/0001 | Batch 31800/35000 | Loss: 0.0066Epoch: 0001/0001 | Batch 32100/35000 | Loss: 0.0017Epoch: 0001/0001 | Batch 32400/35000 | Loss: 0.1485Epoch: 0001/0001 | Batch 32700/35000 | Loss: 0.0324Epoch: 0001/0001 | Batch 33000/35000 | Loss: 0.0155Epoch: 0001/0001 | Batch 33300/35000 | Loss: 0.0007Epoch: 0001/0001 | Batch 33600/35000 | Loss: 0.0049Epoch: 0001/0001 | Batch 33900/35000 | Loss: 0.1170Epoch: 0001/0001 | Batch 34200/35000 | Loss: 0.0002Epoch: 0001/0001 | Batch 34500/35000 | Loss: 0.4201Epoch: 0001/0001 | Batch 34800/35000 | Loss: 0.0018Epoch: 0001/0001 | Train acc.: 78.39% | Val acc.: 86.84%Time elapsed 43.33 minTest accuracy 87.91%</code>
登入後複製


请注意,与之前相比准确率略有提高很可能是由于随机性。

绕开算力限制,如何用单GPU微调 LLM?这是一份「梯度累积」算法教程

以上是繞開算力限制,如何用單GPU微調 LLM?這是一份「梯度累積」演算法教程的詳細內容。更多資訊請關注PHP中文網其他相關文章!

相關標籤:
來源:51cto.com
本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
熱門教學
更多>
最新下載
更多>
網站特效
網站源碼
網站素材
前端模板