目錄
Prompt
訓練與微調
GPU顯存
首頁 科技週邊 人工智慧 模仿Jeff Dean神總結,前Google工程師分享「LLM開發秘籍」:每個開發者都應知道的數字!

模仿Jeff Dean神總結,前Google工程師分享「LLM開發秘籍」:每個開發者都應知道的數字!

May 25, 2023 pm 10:25 PM
ai 開發

最近,一位網友整理了一份「每個LLM開發者都應該知道的數字」,同時解釋了這些數字為何重要,以及我們應該如何利用它們。

他在Google的時候,就有一份由傳奇工程師Jeff Dean整理的文件,叫做「每個工程師都應該知道的數字」。

模仿Jeff Dean神总结,前谷歌工程师分享「LLM开发秘籍」:每个开发者都应知道的数字!

Jeff Dean:「每個工程師都應該知道的數字」

而對於LLM(Large Language Model)開發者來說,有一組類似的用於粗略估算的數字也是非常有用的。

模仿Jeff Dean神总结,前谷歌工程师分享「LLM开发秘籍」:每个开发者都应知道的数字!

Prompt

#40-90%:在提示中加入「簡明扼要」之後節省的成本

要知道,你是依照LLM在輸出時用掉的token來付費的。

這意味著,讓模型簡潔扼要(be concise)地進行表述,可以省下很多錢。

同時,這個理念還可以擴展到更多地方。

例如,你本來想用GPT-4產生10個備選方案,現在也許可以先要求它提供5個,就可以留下另一半的錢了。

1.3:每個字的平均token數

#LLM是以token為單位進行運算的。

而token是單字或單字的子部分,例如「eating」可能會分解成兩個token「eat」和「ing」。

一般來說,750個英文單字會產生大約1000個token。

對於英語以外的語言,每個單字的token會增加,具體數量取決於它們在LLM的嵌入語料庫中的通用性。

模仿Jeff Dean神总结,前谷歌工程师分享「LLM开发秘籍」:每个开发者都应知道的数字!

#考慮到LLM的使用成本很高,因此和價格相關的數字就變得尤為重要了。

~50:GPT-4與GPT-3.5 Turbo的成本比

使用GPT-3.5-Turbo大約比GPT-4便宜50倍。說「大約」是因為GPT-4對提示和產生的收費方式不同。

所以在實際應用時,最好確認GPT-3.5-Turbo是不是就足夠完成你的需求。

例如,對於概括總結這樣的任務,GPT-3.5-Turbo綽綽有餘。

模仿Jeff Dean神总结,前谷歌工程师分享「LLM开发秘籍」:每个开发者都应知道的数字!

模仿Jeff Dean神总结,前谷歌工程师分享「LLM开发秘籍」:每个开发者都应知道的数字!

5:使用GPT- 3.5-Turbo與OpenAI嵌入進行文字產生的成本比

這表示在向量儲存系統中尋找某個內容比使用用LLM產生便宜得多。

具體來說,在神經資訊檢索系統中查找,比向GPT-3.5-Turbo提問要少花約5倍的費用。與GPT-4相比,成本差距更是高達250倍!

10:OpenAI嵌入與自我託管嵌入的成本比

注意:這個數字對負載和嵌入的批次大小非常敏感,因此請將其視為近似值。

透過g4dn.4xlarge(按需價格:1.20美元/小時),我們可以利用用HuggingFace的SentenceTransformers(與OpenAI的嵌入相當)以每秒約9000個token的速度進行嵌入。

在這種速度和節點類型下進行一些基本的計算,顯示自我託管的嵌入可以便宜10倍。

6:OpenAI基礎模型與微調模型查詢的成本比

在OpenAI上,微調模型的成本是基礎模型的6倍。

這也意味著,比起微調客製化模型,調整基礎模型的提示更具成本效益。

1:自我託管基礎模型與微調模型查詢的成本比

如果你自己託管模型,那麼微調模型和基礎模型的成本幾乎相同:這兩種模型的參數數量是一樣的。

訓練與微調

~100萬美元:在1.4兆個token上訓練130億參數模型的成本

#論文網址:https://arxiv.org/pdf/2302.13971.pdf

LLaMa的論文中提到,他們花了21天的時間,使用了2048個A100 80GB GPU,才訓練出了LLaMa模型。

假設我們在Red Pajama訓練集上訓練自己的模型,假設一切正常,沒有任何崩潰,並且第一次就成功,就會得到上述的數字。

此外,這個過程還涉及2048個GPU之間的協調。

大多數公司,並沒有條件做到這些。

不過,最關鍵的訊息是:我們有可能訓練出自己的LLM,只是這個過程並不便宜。

並且每次運行,都需要好幾天時間。

相較之下,使用預訓練模型,會便宜得多。

< 0.001:微調與從頭開始訓練的成本費率

這個數字有點籠統,總的來說,微調的成本可以忽略不計。

例如,你可以用大約7美元的價格,微調一個6B參數的模型。

模仿Jeff Dean神总结,前谷歌工程师分享「LLM开发秘籍」:每个开发者都应知道的数字!

即使按照OpenAI對其最昂貴的微調模型Davinci的費率,每1000個token也只要花費3美分。

這意味著,如果要微調莎士比亞的全部作品(大約100萬個字),只需要花費四、五十美元。

不過,微調是一回事,從頭開始訓練,就是另一回事了...

GPU顯存

如果您正在自架模型,了解GPU顯存就非常重要,因為LLM正在將GPU的顯存推向極限。

以下統計資訊專門用於推理。如果要進行訓練或微調,就需要相當多的顯存。

V100:16GB,A10G:24GB,A100:40/80GB:GPU顯存容量

#了解不同類型的GPU的顯存量是很重要的,因為這將限制你的LLM可以擁有的參數量。

一般來說,我們喜歡使用A10G,因為它們在AWS上的按需價格是每小時1.5到2美元,並且用24G的GPU顯存,而每個A100的價格約為5美元/小時。

2x 參數量:LLM的典型GPU顯存需求

舉個例子,當你擁有一個70億參數的模型時,就需要約14GB的GPU顯存。

這是因為大多數情況下,每個參數需要一個16位元浮點數(或2個位元組)。

通常不需要超過16位元精度,但大多數時候,當精度達到8位元時,解析度就開始降​​低(在某些情況下,這也可以接受)。

當然,也有一些專案改善了這種情況。例如llama.cpp就透過在6GB GPU上量化到4位(8位也可以),跑通了130億參數的模型,但這並不常見。

~1GB:嵌入模型的典型GPU顯存需求

每當你嵌入語句(聚類、語意當搜尋和分類任務經常要做的事)時,你就需要一個像語句轉換器這樣的嵌入模型。 OpenAI也有自己的商用嵌入模式。

模仿Jeff Dean神总结,前谷歌工程师分享「LLM开发秘籍」:每个开发者都应知道的数字!

通常不必擔心GPU上的顯存嵌入佔用多少,它們相當小,甚至可以在同一GPU上嵌入LLM 。

>10x:透過批次LLM請求,提高吞吐量

##透過GPU執行LLM查詢的延遲非常高:吞吐量為每秒0.2個查詢的話,延遲可能需要5秒。

有趣的是,如果你執行兩個任務,延遲可能只需要5.2秒。

這意味著,如果能將25個查詢捆綁在一起,則需要大約10秒的延遲,而吞吐量已提高到每秒2.5個查詢。

不過,請接著往下看。

~1 MB:130億參數模型輸出1個token所需的GPU記憶體

你所需要的顯存與你想產生的最大token數量直接成正比。

例如,產生最多512個token(大約380個單字)的輸出,就需要512MB的記憶體。

你可能會說,這沒什麼大不了的──我有24GB的顯存,512MB算什麼?然而,如果你想運行更大的batch,這個數值就會開始累積了。

例如,如果你想做16個batch,記憶體就會直接增加到8GB。

以上是模仿Jeff Dean神總結,前Google工程師分享「LLM開發秘籍」:每個開發者都應知道的數字!的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

<🎜>:泡泡膠模擬器無窮大 - 如何獲取和使用皇家鑰匙
3 週前 By 尊渡假赌尊渡假赌尊渡假赌
北端:融合系統,解釋
3 週前 By 尊渡假赌尊渡假赌尊渡假赌
Mandragora:巫婆樹的耳語 - 如何解鎖抓鉤
3 週前 By 尊渡假赌尊渡假赌尊渡假赌

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

熱門話題

Java教學
1664
14
CakePHP 教程
1423
52
Laravel 教程
1321
25
PHP教程
1269
29
C# 教程
1249
24
C  中的chrono庫如何使用? C 中的chrono庫如何使用? Apr 28, 2025 pm 10:18 PM

使用C 中的chrono庫可以讓你更加精確地控制時間和時間間隔,讓我們來探討一下這個庫的魅力所在吧。 C 的chrono庫是標準庫的一部分,它提供了一種現代化的方式來處理時間和時間間隔。對於那些曾經飽受time.h和ctime折磨的程序員來說,chrono無疑是一個福音。它不僅提高了代碼的可讀性和可維護性,還提供了更高的精度和靈活性。讓我們從基礎開始,chrono庫主要包括以下幾個關鍵組件:std::chrono::system_clock:表示系統時鐘,用於獲取當前時間。 std::chron

如何理解C  中的DMA操作? 如何理解C 中的DMA操作? Apr 28, 2025 pm 10:09 PM

DMA在C 中是指DirectMemoryAccess,直接內存訪問技術,允許硬件設備直接與內存進行數據傳輸,不需要CPU干預。 1)DMA操作高度依賴於硬件設備和驅動程序,實現方式因係統而異。 2)直接訪問內存可能帶來安全風險,需確保代碼的正確性和安全性。 3)DMA可提高性能,但使用不當可能導致系統性能下降。通過實踐和學習,可以掌握DMA的使用技巧,在高速數據傳輸和實時信號處理等場景中發揮其最大效能。

怎樣在C  中處理高DPI顯示? 怎樣在C 中處理高DPI顯示? Apr 28, 2025 pm 09:57 PM

在C 中處理高DPI顯示可以通過以下步驟實現:1)理解DPI和縮放,使用操作系統API獲取DPI信息並調整圖形輸出;2)處理跨平台兼容性,使用如SDL或Qt的跨平台圖形庫;3)進行性能優化,通過緩存、硬件加速和動態調整細節級別來提升性能;4)解決常見問題,如模糊文本和界面元素過小,通過正確應用DPI縮放來解決。

C  中的實時操作系統編程是什麼? C 中的實時操作系統編程是什麼? Apr 28, 2025 pm 10:15 PM

C 在實時操作系統(RTOS)編程中表現出色,提供了高效的執行效率和精確的時間管理。 1)C 通過直接操作硬件資源和高效的內存管理滿足RTOS的需求。 2)利用面向對象特性,C 可以設計靈活的任務調度系統。 3)C 支持高效的中斷處理,但需避免動態內存分配和異常處理以保證實時性。 4)模板編程和內聯函數有助於性能優化。 5)實際應用中,C 可用於實現高效的日誌系統。

怎樣在C  中測量線程性能? 怎樣在C 中測量線程性能? Apr 28, 2025 pm 10:21 PM

在C 中測量線程性能可以使用標準庫中的計時工具、性能分析工具和自定義計時器。 1.使用庫測量執行時間。 2.使用gprof進行性能分析,步驟包括編譯時添加-pg選項、運行程序生成gmon.out文件、生成性能報告。 3.使用Valgrind的Callgrind模塊進行更詳細的分析,步驟包括運行程序生成callgrind.out文件、使用kcachegrind查看結果。 4.自定義計時器可靈活測量特定代碼段的執行時間。這些方法幫助全面了解線程性能,並優化代碼。

量化交易所排行榜2025 數字貨幣量化交易APP前十名推薦 量化交易所排行榜2025 數字貨幣量化交易APP前十名推薦 Apr 30, 2025 pm 07:24 PM

交易所內置量化工具包括:1. Binance(幣安):提供Binance Futures量化模塊,低手續費,支持AI輔助交易。 2. OKX(歐易):支持多賬戶管理和智能訂單路由,提供機構級風控。獨立量化策略平台有:3. 3Commas:拖拽式策略生成器,適用於多平台對沖套利。 4. Quadency:專業級算法策略庫,支持自定義風險閾值。 5. Pionex:內置16 預設策略,低交易手續費。垂直領域工具包括:6. Cryptohopper:雲端量化平台,支持150 技術指標。 7. Bitsgap:

給MySQL表添加和刪除字段的操作步驟 給MySQL表添加和刪除字段的操作步驟 Apr 29, 2025 pm 04:15 PM

在MySQL中,添加字段使用ALTERTABLEtable_nameADDCOLUMNnew_columnVARCHAR(255)AFTERexisting_column,刪除字段使用ALTERTABLEtable_nameDROPCOLUMNcolumn_to_drop。添加字段時,需指定位置以優化查詢性能和數據結構;刪除字段前需確認操作不可逆;使用在線DDL、備份數據、測試環境和低負載時間段修改表結構是性能優化和最佳實踐。

C  中的字符串流如何使用? C 中的字符串流如何使用? Apr 28, 2025 pm 09:12 PM

C 中使用字符串流的主要步驟和注意事項如下:1.創建輸出字符串流並轉換數據,如將整數轉換為字符串。 2.應用於復雜數據結構的序列化,如將vector轉換為字符串。 3.注意性能問題,避免在處理大量數據時頻繁使用字符串流,可考慮使用std::string的append方法。 4.注意內存管理,避免頻繁創建和銷毀字符串流對象,可以重用或使用std::stringstream。

See all articles