目錄
場景設定
常規做法
改進1-去掉屬性名
改進2-使用更好的序列化工具
改進3-最佳化資料類型
改進4-考慮ZIP壓縮
最終落地
首頁 資料庫 Redis Redis快取空間怎麼優化

Redis快取空間怎麼優化

May 27, 2023 pm 11:44 PM
redis

場景設定

1、我們需要將POJO儲存到快取中,該類別定義如下

public class TestPOJO implements Serializable {
    private String testStatus;
    private String userPin;
    private String investor;
    private Date testQueryTime;
    private Date createTime;
    private String bizInfo;
    private Date otherTime;
    private BigDecimal userAmount;
    private BigDecimal userRate;
    private BigDecimal applyAmount;
    private String type;
    private String checkTime;
    private String preTestStatus;
    
    public Object[] toValueArray(){
        Object[] array = {testStatus, userPin, investor, testQueryTime,
                createTime, bizInfo, otherTime, userAmount,
                userRate, applyAmount, type, checkTime, preTestStatus};
        return array;
    }
    
    public CreditRecord fromValueArray(Object[] valueArray){         
        //具体的数据类型会丢失,需要做处理
    }
}
登入後複製

2、用下面的實例作為測試資料

TestPOJO pojo = new TestPOJO();
pojo.setApplyAmount(new BigDecimal("200.11"));
pojo.setBizInfo("XX");
pojo.setUserAmount(new BigDecimal("1000.00"));
pojo.setTestStatus("SUCCESS");
pojo.setCheckTime("2023-02-02");
pojo.setInvestor("ABCD");
pojo.setUserRate(new BigDecimal("0.002"));
pojo.setTestQueryTime(new Date());
pojo.setOtherTime(new Date());
pojo.setPreTestStatus("PROCESSING");
pojo.setUserPin("ABCDEFGHIJ");
pojo.setType("Y");
登入後複製

常規做法

System.out.println(JSON.toJSONString(pojo).length());
登入後複製

使用JSON直接序列化、列印length=284**,**這種方式是最簡單的方式,也是最常用的方式,具體數據如下:

{"applyAmount":200.11,"bizInfo":"XX","checkTime":"2023-02-02","investor":"ABCD ","otherTime":"2023-04-10 17:45:17.717","preCheckStatus":"PROCESSING","testQueryTime":"2023-04-10 17:45:17.717","testStatus":"SUCCESS ","type":"Y","userAmount":1000.00,"userPin":"ABCDEFGHIJ","userRate":0.002}

我們發現,以上包含了大量無用的數據,其中屬性名是沒有必要儲存的。

改進1-去掉屬性名

System.out.println(JSON.toJSONString(pojo.toValueArray()).length());
登入後複製

透過選擇陣列結構取代物件結構,去掉了屬性名,列印length=144,將資料大小降低了50%,具體數據如下:

["SUCCESS","ABCDEFGHIJ","ABCD","2023-04-10 17:45:17.717",null,"XX"," 2023-04-10 17:45:17.717",1000.00,0.002,200.11,"Y","2023-02-02","PROCESSING"]

#我們發現,null是沒有必要儲存的,時間的格式被序列化為字串,不合理的序列化結果,導致了資料的膨脹,所以我們應該選用更好的序列化工具。

改進2-使用更好的序列化工具

//我们仍然选取JSON格式,但使用了第三方序列化工具
System.out.println(new ObjectMapper(new MessagePackFactory()).writeValueAsBytes(pojo.toValueArray()).length);
登入後複製

選取更好的序列化工具,實現欄位的壓縮和合理的資料格式,列印** length=92,**空間比上一步又降低了40%。

這是一份二進位數據,需要以二進位操作Redis,將二進位轉為字串後,列印如下:

��SUCCESS�ABCDEFGHIJ�ABCD� �j�6� ��XX� �j�6�� ��?`bM����@i � �Q�Y�2023-02-02�PROCESSING

##順著這個思路再深挖,我們發現,可以透過手動選擇資料類型,實現更極致的最佳化效果,選擇使用較小的資料類型,會獲得進一步的提升。

改進3-最佳化資料類型

在上述用例中,testStatus、preCheckStatus、investor這3個字段,實際上是枚舉字串類型,如果能夠使用更簡單資料類型(例如byte或int等)取代string,還可以進一步節省空間。可以使用Long型別來取代字串來表示checkTime,這樣序列化工具輸出的位元組數會更少。

public Object[] toValueArray(){
    Object[] array = {toInt(testStatus), userPin, toInt(investor), testQueryTime,
    createTime, bizInfo, otherTime, userAmount,
    userRate, applyAmount, type, toLong(checkTime), toInt(preTestStatus)};
    return array;
}
登入後複製

在手動調整後,使用了更小的資料類型取代了String類型,列印

length=69

改進4-考慮ZIP壓縮

除了以上的幾點之外,還可以考慮使用ZIP壓縮方式獲取更小的體積,在內容較大或重複性較多的情況下,ZIP壓縮的效果明顯,如果存儲的內容是TestPOJO的數組,可能適合使用ZIP壓縮。

對於小於30個位元組的文件,ZIP壓縮可能增加檔案大小,不一定能減少檔案體積。在重複性內容較少的情況下,無法獲得明顯提升。且存在CPU開銷。

在經過以上最佳化之後,ZIP壓縮不再是必選項,需要依照實際資料做測試才能分辨到ZIP的壓縮效果。

最終落地

上面的幾個改進步驟體現了優化的思路,但是反序列化的過程會導致類型的丟失,處理起來比較繁瑣,所以我們還需要考慮反序列化的問題。

在快取物件被預先定義的情況下,我們完全可以手動處理每個字段,所以在實戰中,推薦使用手動序列化達到上述目的,實現精細化的控制,達到最好的壓縮效果和最小的性能開銷。

可以參考以下msgpack的實作程式碼,以下為測試程式碼,請自行封裝更好的Packer和UnPacker等工具:

<dependency>    
    <groupId>org.msgpack</groupId>    
    <artifactId>msgpack-core</artifactId>    
    <version>0.9.3</version>
</dependency>
登入後複製
    public byte[] toByteArray() throws Exception {
        MessageBufferPacker packer = MessagePack.newDefaultBufferPacker();
        toByteArray(packer);
        packer.close();
        return packer.toByteArray();
    }

    public void toByteArray(MessageBufferPacker packer) throws Exception {
        if (testStatus == null) {
            packer.packNil();
        }else{
            packer.packString(testStatus);
        }

        if (userPin == null) {
            packer.packNil();
        }else{
            packer.packString(userPin);
        }

        if (investor == null) {
            packer.packNil();
        }else{
            packer.packString(investor);
        }

        if (testQueryTime == null) {
            packer.packNil();
        }else{
            packer.packLong(testQueryTime.getTime());
        }

        if (createTime == null) {
            packer.packNil();
        }else{
            packer.packLong(createTime.getTime());
        }

        if (bizInfo == null) {
            packer.packNil();
        }else{
            packer.packString(bizInfo);
        }

        if (otherTime == null) {
            packer.packNil();
        }else{
            packer.packLong(otherTime.getTime());
        }

        if (userAmount == null) {
            packer.packNil();
        }else{
            packer.packString(userAmount.toString());
        }

        if (userRate == null) {
            packer.packNil();
        }else{
            packer.packString(userRate.toString());
        }

        if (applyAmount == null) {
            packer.packNil();
        }else{
            packer.packString(applyAmount.toString());
        }

        if (type == null) {
            packer.packNil();
        }else{
            packer.packString(type);
        }

        if (checkTime == null) {
            packer.packNil();
        }else{
            packer.packString(checkTime);
        }

        if (preTestStatus == null) {
            packer.packNil();
        }else{
            packer.packString(preTestStatus);
        }
    }


    public void fromByteArray(byte[] byteArray) throws Exception {
        MessageUnpacker unpacker = MessagePack.newDefaultUnpacker(byteArray);
        fromByteArray(unpacker);
        unpacker.close();
    }

    public void fromByteArray(MessageUnpacker unpacker) throws Exception {
        if (!unpacker.tryUnpackNil()){
            this.setTestStatus(unpacker.unpackString());
        }
        if (!unpacker.tryUnpackNil()){
            this.setUserPin(unpacker.unpackString());
        }
        if (!unpacker.tryUnpackNil()){
            this.setInvestor(unpacker.unpackString());
        }
        if (!unpacker.tryUnpackNil()){
            this.setTestQueryTime(new Date(unpacker.unpackLong()));
        }
        if (!unpacker.tryUnpackNil()){
            this.setCreateTime(new Date(unpacker.unpackLong()));
        }
        if (!unpacker.tryUnpackNil()){
            this.setBizInfo(unpacker.unpackString());
        }
        if (!unpacker.tryUnpackNil()){
            this.setOtherTime(new Date(unpacker.unpackLong()));
        }
        if (!unpacker.tryUnpackNil()){
            this.setUserAmount(new BigDecimal(unpacker.unpackString()));
        }
        if (!unpacker.tryUnpackNil()){
            this.setUserRate(new BigDecimal(unpacker.unpackString()));
        }
        if (!unpacker.tryUnpackNil()){
            this.setApplyAmount(new BigDecimal(unpacker.unpackString()));
        }
        if (!unpacker.tryUnpackNil()){
            this.setType(unpacker.unpackString());
        }
        if (!unpacker.tryUnpackNil()){
            this.setCheckTime(unpacker.unpackString());
        }
        if (!unpacker.tryUnpackNil()){
            this.setPreTestStatus(unpacker.unpackString());
        }
    }
登入後複製

場景延伸

#假設,我們為2億用戶儲存數據,每個用戶包含40個字段,字段key的長度是6個字節,字段是分別管理的。

正常情況下,我們會想到hash結構,而hash結構儲存了key的信息,會佔用額外資源,字段key屬於不必要數據,按照上述思路,可以使用list替代hash結構。

透過Redis官方工具測試,使用list結構需要144G的空間,而使用hash結構需要245G的空間**(當50%以上的屬性為空時,需要進行測試,是否仍然適用)* *

Redis快取空間怎麼優化

在上述案例中,我們採取了幾個非常簡單的措施,僅有幾行簡單的程式碼,可降低空間70%以上,在資料量較大以及性能要求較高的場景中,是非常值得推薦的。 :

• 使用陣列替代物件(如果大量欄位為空,需配合序列化工具對null進行壓縮)

• 使用更好的序列化工具

• 使用更小的資料類型

• 考慮使用ZIP壓縮

• 使用list取代hash結構(如果大量欄位為空,需要進行測試對比)

以上是Redis快取空間怎麼優化的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

redis集群模式怎麼搭建 redis集群模式怎麼搭建 Apr 10, 2025 pm 10:15 PM

Redis集群模式通過分片將Redis實例部署到多個服務器,提高可擴展性和可用性。搭建步驟如下:創建奇數個Redis實例,端口不同;創建3個sentinel實例,監控Redis實例並進行故障轉移;配置sentinel配置文件,添加監控Redis實例信息和故障轉移設置;配置Redis實例配置文件,啟用集群模式並指定集群信息文件路徑;創建nodes.conf文件,包含各Redis實例的信息;啟動集群,執行create命令創建集群並指定副本數量;登錄集群執行CLUSTER INFO命令驗證集群狀態;使

redis怎麼讀取隊列 redis怎麼讀取隊列 Apr 10, 2025 pm 10:12 PM

要從 Redis 讀取隊列,需要獲取隊列名稱、使用 LPOP 命令讀取元素,並處理空隊列。具體步驟如下:獲取隊列名稱:以 "queue:" 前綴命名,如 "queue:my-queue"。使用 LPOP 命令:從隊列頭部彈出元素並返回其值,如 LPOP queue:my-queue。處理空隊列:如果隊列為空,LPOP 返回 nil,可先檢查隊列是否存在再讀取元素。

redis數據怎麼清空 redis數據怎麼清空 Apr 10, 2025 pm 10:06 PM

如何清空 Redis 數據:使用 FLUSHALL 命令清除所有鍵值。使用 FLUSHDB 命令清除當前選定數據庫的鍵值。使用 SELECT 切換數據庫,再使用 FLUSHDB 清除多個數據庫。使用 DEL 命令刪除特定鍵。使用 redis-cli 工具清空數據。

centos redis如何配置Lua腳本執行時間 centos redis如何配置Lua腳本執行時間 Apr 14, 2025 pm 02:12 PM

在CentOS系統上,您可以通過修改Redis配置文件或使用Redis命令來限制Lua腳本的執行時間,從而防止惡意腳本佔用過多資源。方法一:修改Redis配置文件定位Redis配置文件:Redis配置文件通常位於/etc/redis/redis.conf。編輯配置文件:使用文本編輯器(例如vi或nano)打開配置文件:sudovi/etc/redis/redis.conf設置Lua腳本執行時間限制:在配置文件中添加或修改以下行,設置Lua腳本的最大執行時間(單位:毫秒)

redis命令行怎麼用 redis命令行怎麼用 Apr 10, 2025 pm 10:18 PM

使用 Redis 命令行工具 (redis-cli) 可通過以下步驟管理和操作 Redis:連接到服務器,指定地址和端口。使用命令名稱和參數向服務器發送命令。使用 HELP 命令查看特定命令的幫助信息。使用 QUIT 命令退出命令行工具。

redis過期策略怎麼設置 redis過期策略怎麼設置 Apr 10, 2025 pm 10:03 PM

Redis數據過期策略有兩種:定期刪除:定期掃描刪除過期鍵,可通過 expired-time-cap-remove-count、expired-time-cap-remove-delay 參數設置。惰性刪除:僅在讀取或寫入鍵時檢查刪除過期鍵,可通過 lazyfree-lazy-eviction、lazyfree-lazy-expire、lazyfree-lazy-user-del 參數設置。

如何優化debian readdir的性能 如何優化debian readdir的性能 Apr 13, 2025 am 08:48 AM

在Debian系統中,readdir系統調用用於讀取目錄內容。如果其性能表現不佳,可嘗試以下優化策略:精簡目錄文件數量:盡可能將大型目錄拆分成多個小型目錄,降低每次readdir調用處理的項目數量。啟用目錄內容緩存:構建緩存機制,定期或在目錄內容變更時更新緩存,減少對readdir的頻繁調用。內存緩存(如Memcached或Redis)或本地緩存(如文件或數據庫)均可考慮。採用高效數據結構:如果自行實現目錄遍歷,選擇更高效的數據結構(例如哈希表而非線性搜索)存儲和訪問目錄信

redis計數器怎麼實現 redis計數器怎麼實現 Apr 10, 2025 pm 10:21 PM

Redis計數器是一種使用Redis鍵值對存儲來實現計數操作的機制,包含以下步驟:創建計數器鍵、增加計數、減少計數、重置計數和獲取計數。 Redis計數器的優勢包括速度快、高並發、持久性和簡單易用。它可用於用戶訪問計數、實時指標跟踪、遊戲分數和排名以及訂單處理計數等場景。

See all articles