jedis.pfmerge("hll:unique_ips", "hll:unique_ips1", "hll:unique_ips2", "hll:unique_ips3");
Redis中HyperLogLog資料類型如何使用
1. HyperLogLog 的原理
Redis HyperLogLog使用機率演算法-HyperLogLogLog演算法,來估計基數。使用一組雜湊函數和長度為m的位數組,HyperLogLog能夠估算集合中獨特元素的數量。
在 HyperLogLog 演算法中,對每個元素進行雜湊處理,把雜湊值轉換為二進位後,根據二進位字串中 1 的個數來給每個元素打分數。例如,一個元素的雜湊值為01110100011,那麼前綴中1的個數是3,因此在 HyperLogLog 演算法中,這個元素的分數為3。
當所有元素的分數統計完之後,取每一個分數的倒數(1 / 2^n),然後將這些倒數相加後取倒數,就得到一個基數估計值,這個值就是HyperLogLog算法的估計結果。
HyperLogLog演算法透過對位數組的長度m的大小進行取捨,折衷資料結構所佔用的記憶體與估計值的精確度(即估計誤差),得到了在資料佔用空間與錯誤較小程度之間完美的平衡。
簡而言之,HyperLogLog演算法的核心思想是基於雜湊函數和位元運算,透過將雜湊值轉換成位元流並統計前導0的個數,從而快速估算大型資料集中唯一值的數量。利用 hyperloglog 演算法,我們能夠快速辨識非常大的資料集中的重複網頁。
2.使用步驟:
Redis HyperLogLog是一種可用於估算集合中元素數量的資料結構,它能夠透過使用非常少的記憶體來維護海量的資料。它的精確性高於常規估算演算法,並且處理大量資料時速度非常快。
一個簡單的例子,我們可以用HyperLogLog來計算訪問網站的獨立IP數,具體可以按以下步驟操作:
首先建立一個HyperLogLog資料結構:
PFADD hll:unique_ips 127.0.0.1
為每次存取ip 新增至unique_ips資料結構:
PFADD hll:unique_ips 192.168.1.1
#PFADD hll:unique_ips 192.168.1.1#取得計算集合中元素數量的近似值:
PFCOUNT hll:unique_ips- 可以透過對多個HyperLogLogLog結構(例如按天或按小時)的合併,以獲得更精確的計數。
<dependency> <groupId>redis.clients</groupId> <artifactId>jedis</artifactId> <version>3.6.0</version> </dependency>
Jedis jedis = new Jedis("localhost");
jedis.pfadd("hll:unique_ips", "127.0.0.1");
Long count = jedis.pfcount("hll:unique_ips"); System.out.println(count);
5.可以透過多個HyperLogLog結構的合併來獲得更精確的計數。在Jedis中可以使用
PFMERGE指令來合併HyperLogLogLog資料結構:jedis.pfmerge("hll:unique_ips", "hll:unique_ips1", "hll:unique_ips2", "hll:unique_ips3");
登入後複製
5.Redission使用依賴 1.建立RedissonClient物件jedis.pfmerge("hll:unique_ips", "hll:unique_ips1", "hll:unique_ips2", "hll:unique_ips3");
Config config = new Config(); config.useSingleServer().setAddress("redis://localhost:6379"); RedissonClient redisson = Redisson.create(config);
RHyperLogLog<String> uniqueIps = redisson.getHyperLogLog("hll:unique_ips");
uniqueIps.add("127.0.0.1");
long approximateCount = uniqueIps.count(); System.out.println(approximateCount);
RHyperLogLog<String> uniqueIps1 = redisson.getHyperLogLog("hll:unique_ips1");
RHyperLogLog<String> uniqueIps2 = redisson.getHyperLogLog("hll:unique_ips2");
uniqueIps.mergeWith(uniqueIps1, uniqueIps2);
登入後複製 5.合併多個HyperLogLogLog物件
RHyperLogLog<String> uniqueIps1 = redisson.getHyperLogLog("hll:unique_ips1"); RHyperLogLog<String> uniqueIps2 = redisson.getHyperLogLog("hll:unique_ips2"); uniqueIps.mergeWith(uniqueIps1, uniqueIps2);
rrreee
#[6 .HyperLogLog 提供了哪些特性與方法- 特性:
- 精確度低,但佔用記憶體極少。
- 支援插入新元素,同時不會重複計數。
- 提供指令來優化記憶體使用和計數準確性。例如PFADD、PFCOUNT、PFMERGE等指令。
- 能夠估計一個資料集中的不同元素數量,即集合的基底數(cardinality)。
- HyperLogLog常用的方法:
- PFADD key element [element ...]:新增一個或多個元素到HyperLogLogLog結構中。
- PFCOUNT key [key ...]:取得一個或多個HyperLogLogLog結構的基數估計值。
- PFMERGE destkey sourcekey [sourcekey ...]:合併一個或多個HyperLogLog架構到一個目標結構。
统计页面访问量 - 在Web应用程序中, HyperLogLog可以使用为每个页面计算多少次独特的访问者。利用HyperLogLog技术,跨越不同的时间段计算该页面的平均访问量。
HyperLogLog在分析大数据集合中的用户数量方面具有显著的实用性。在处理独特的用户ID这类数据集合时,一种基于概率的数据结构显得尤为有效。HyperLogLog会在进行散列计算后,仅保存有限数量的散列值,并且能够推断出数据集的大小。
统计广告点击量 - 对于网站或应用程序的广告分析,HyperLogLog可以用于捕获有效点击数量,即非重复或唯一点击数量。
以上是Redis中HyperLogLog資料類型如何使用的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

熱門話題

Redis集群模式通過分片將Redis實例部署到多個服務器,提高可擴展性和可用性。搭建步驟如下:創建奇數個Redis實例,端口不同;創建3個sentinel實例,監控Redis實例並進行故障轉移;配置sentinel配置文件,添加監控Redis實例信息和故障轉移設置;配置Redis實例配置文件,啟用集群模式並指定集群信息文件路徑;創建nodes.conf文件,包含各Redis實例的信息;啟動集群,執行create命令創建集群並指定副本數量;登錄集群執行CLUSTER INFO命令驗證集群狀態;使

如何清空 Redis 數據:使用 FLUSHALL 命令清除所有鍵值。使用 FLUSHDB 命令清除當前選定數據庫的鍵值。使用 SELECT 切換數據庫,再使用 FLUSHDB 清除多個數據庫。使用 DEL 命令刪除特定鍵。使用 redis-cli 工具清空數據。

使用 Redis 指令需要以下步驟:打開 Redis 客戶端。輸入指令(動詞 鍵 值)。提供所需參數(因指令而異)。按 Enter 執行指令。 Redis 返迴響應,指示操作結果(通常為 OK 或 -ERR)。

Redis 使用單線程架構,以提供高性能、簡單性和一致性。它利用 I/O 多路復用、事件循環、非阻塞 I/O 和共享內存來提高並發性,但同時存在並發性受限、單點故障和不適合寫密集型工作負載的局限性。

理解 Redis 源碼的最佳方法是逐步進行:熟悉 Redis 基礎知識。選擇一個特定的模塊或功能作為起點。從模塊或功能的入口點開始,逐行查看代碼。通過函數調用鏈查看代碼。熟悉 Redis 使用的底層數據結構。識別 Redis 使用的算法。

Redis 使用哈希表存儲數據,支持字符串、列表、哈希表、集合和有序集合等數據結構。 Redis 通過快照 (RDB) 和追加只寫 (AOF) 機制持久化數據。 Redis 使用主從復制來提高數據可用性。 Redis 使用單線程事件循環處理連接和命令,保證數據原子性和一致性。 Redis 為鍵設置過期時間,並使用 lazy 刪除機制刪除過期鍵。

要從 Redis 讀取隊列,需要獲取隊列名稱、使用 LPOP 命令讀取元素,並處理空隊列。具體步驟如下:獲取隊列名稱:以 "queue:" 前綴命名,如 "queue:my-queue"。使用 LPOP 命令:從隊列頭部彈出元素並返回其值,如 LPOP queue:my-queue。處理空隊列:如果隊列為空,LPOP 返回 nil,可先檢查隊列是否存在再讀取元素。

使用Redis進行鎖操作需要通過SETNX命令獲取鎖,然後使用EXPIRE命令設置過期時間。具體步驟為:(1) 使用SETNX命令嘗試設置一個鍵值對;(2) 使用EXPIRE命令為鎖設置過期時間;(3) 當不再需要鎖時,使用DEL命令刪除該鎖。
