可直訓ChatGPT類模型!華師大、NUS開源HugNLP框架:一鍵刷榜,全面統一NLP訓練

王林
發布: 2023-05-29 20:29:22
轉載
1415 人瀏覽過

近日,華師大HugAILab團隊研發了HugNLP框架,這是一個面向研究者和開發者的全面統一的NLP訓練框架,可支持包括文本分類、文本匹配、問答、信息抽取、文本生成、小樣本學習等多種NLP任務模型建構與訓練。

可直訓ChatGPT類模型!華師大、NUS開源HugNLP框架:一鍵刷榜,全面統一NLP訓練

#開源位址:https://github.com/HugAILab/HugNLP

論文:https://arxiv.org/abs/2302.14286

值得注意的是,HugNLP也整合了大量最新的Prompt技術,例如Prompt-Tuning、In-Context Learning、Instruction-tuning,未來也將引進Chain-of-thought

HugAILab團隊也研發了一系列的應用,例如CLUE&GLUE刷榜工具,可支援ChatGPT類模型訓練部署產品HugChat,以及統一資訊抽取產品HugIE等。

HugNLP是一個分層式框架,遵循「高內聚低耦合」的開發模式,其核心包括模型層(Models)、處理器層(Processors)、評估器層(Evaluators)和應用層(Applications)四部分。

框架圖如下:

可直訓ChatGPT類模型!華師大、NUS開源HugNLP框架:一鍵刷榜,全面統一NLP訓練

  • #模型層:包含模型部分,主要依照任務類型進行分割;
  • 處理器層:對資料進行載入、快取、分詞等處理,並轉換為模型輸入的Tensor;
  • 評估器層:依據不同類型的任務(分類或產生),指定不同的評估流程和評估指標;
  • ##應用層:對應的應用程式執行腳本。理論上來說,選定一個模型、一個資料處理器、一個評估器,即可對應一個應用。

HugNLP完全基於HuggingFace開發,具有易擴展、易於部署能力,同時整合了MLFlow訓練追蹤器,方便使用者及時追蹤實驗進度,並進行實驗分析。

HugNLP框架之所以稱為全面,是因為其整合了大量的NLP任務模型,目前已經實現的包括:

  • 預訓練:Masked LM、Causal LM、知識增強預訓練;
  • #Instruction-Tuning:支援自迴歸生成式、區間抽取式、NLI等統一範式訓練;
  • 文字分類/配對:傳統Fine-tuning、Prompt-tuning、In-Context Learning;
  • 序列標註: 支援NER等序列標註任務;
  • 元學習: 基於序列的元學習(SentenceProto)、基於區間的元學習(SpanProto)、基於token的元學習(TokenProto,NNShot);
  • #問答:支援抽出式問答、多項選擇式問答、開放生成式問答;
  • 文字產生:支援文字摘要、機器翻譯(正在開發中);
  • 程式碼智慧:目前整合了程式碼複製偵測(Clone)、程式碼缺陷偵測(Defact)等Code任務;

快速部署HugNLP框架,只需執行程式碼三行指令即可:

git clone https://github.com/HugAILab/HugNLP.gitcd HugNLPpython3 setup.py install
登入後複製

#下面介紹HugNLP的幾個核心能力:

  • Benchmark一鍵刷榜;
  • 預訓練與知識注入;
  • Fine-tuning & Prompt-tuning;
  • Instruction-tuning;
  • In-Context Learning;
  • 半監督Self-training;
  • Code程式碼智慧;
一、Benchmark一鍵刷榜

HugNLP最早開發了一些常見的排行榜的刷榜工具,如GLUE、CLUE等。用戶只需要配置對應的資料集名稱,即可實現一鍵刷榜。

为了验证框架的有效性,在22年9月提交了CLUE榜单的刷榜结果,选择一系列中文小模型(RoBERTa、MacBERT、P-BERT等)并结合了logits集成方法,至今依然维持在第15名位置,曾一度超越了部分企业。

可直訓ChatGPT類模型!華師大、NUS開源HugNLP框架:一鍵刷榜,全面統一NLP訓練

例如如果训练CLUE榜单的AFQMC数据集,可编辑文件

applications/benchmark/clue/clue_finetune_dev.sh
登入後複製

修改参数:

--user_defined="data_name=afqmc"
登入後複製

执行下列命令即可:

bash applications/benchmark/clue/clue_finetune_dev.sh
登入後複製

同样的方法还可以训练一些常用的NLP任务,例如阅读理解、实体识别、以及GLUE英文数据集等。

HugNLP还集成了一系列模型用于刷榜,例如BERT、RoBERTa、DeBERTa、MacBERT、Erlangshen等。

二、预训练与知识注入

传统的一些预训练模型(例如BERT、GPT2等)是在通用语料上训练的,而对领域事实知识可能不敏感,因此需要显式的在预训练阶段注入事实知识。

HugNLP实现了多个知识增强预训练技术,其中包括DKPLM和KP-PLM。可分解的知识注入方法DKPLM和将结构化知识转化为自然语言形式的注入方法KP-PLM是两种不同的注入方式。由于这些知识注入方法采用的是可插拔式的设计,因此无需改变模型结构,这使得在下游任务上进行微调非常容易。

执行下面命令即可进行Masked Language Modeling和Causal Language Modeling的预训练:

bash applications/pretraining/run_pretrain_mlm.shbash applications/pretraining/run_pretrain_casual_lm.sh
登入後複製

三、 Fine-tuning & Prompt-Tuning

Pre-training和Fine-tuning模式通常被遵循,以基于预训练语言模型的NLP。HugNLP也包含Fine-tuning技术。

3.1 参数有效性学习

HugNLP集成了包括Prefix-tuning、Adapter、BitFit、LoRA等参数有效性训练方法,可以加速模型的训练,降低显存占用量。

可直訓ChatGPT類模型!華師大、NUS開源HugNLP框架:一鍵刷榜,全面統一NLP訓練

在训练脚本中,只需要添加一行参数,即可开启参数有效性训练:

--use_freezing
登入後複製

对于参数有效性方法,HugNLP实现了若干类别的分类模型,如下所示:

CLASSIFICATION_MODEL_CLASSES = { "head_prefix_cls": { "bert": BertPrefixForSequenceClassification, "roberta": RobertaPrefixForSequenceClassification, }, "head_ptuning_cls": { "bert": BertPtuningForSequenceClassification, "roberta": RobertaPtuningForSequenceClassification, }, "head_adapter_cls": { "bert": BertAdapterForSequenceClassification, "roberta": RobertaAdapterForSequenceClassification, }, "masked_prompt_cls": { "bert": PromptBertForSequenceClassification, "roberta": PromptRobertaForSequenceClassification, },  "masked_prompt_prefix_cls": { "bert": PromptBertPrefixForSequenceClassification, "roberta": PromptRobertaPrefixForSequenceClassification, }, "masked_prompt_ptuning_cls": { "bert": PromptBertPtuningForSequenceClassification, "roberta": PromptRobertaPtuningForSequenceClassification, }, "masked_prompt_adapter_cls": { "bert": PromptBertAdapterForSequenceClassification, "roberta": PromptRobertaAdapterForSequenceClassification, }, }
登入後複製

只需要指定下面参数即可,例如选择adapter进行分类:

--task_type=head_adapter_cls
登入後複製

3.2 对抗训练:引入对Embedding的扰动,提高模型的鲁棒性

HugNLP框架集成了若干种对抗训练的方法,其中最简单的对抗方法为FGM算法:

  • 首先计算输入样本(通常为word embedding)的损失函数以及在处的梯度:;
  • 计算在输入样本的扰动量:,其中为超参数,默认取1.0;
  • 得到对抗样本:;
  • 根据得到的对抗样本,再次喂入模型中,计算损失,并累积梯度;
  • 恢复原始的word embedding,接着下一个batch。

在训练时,只需要添加一行参数,即可默认调用FGM算法:

--do_adv
登入後複製

3.3 Prompt-tuning:通过模板来复用预训练目标

传统的Fine-tuning在低资源场景下容易出现过拟合问题,因此复用预训练的目标可以拉近Pre-training和Fine-tuning之间的语义差异。

HugNLP集成了PET、P-tuning、Prefix-tuning等Prompt-Tuning算法,并无缝嵌入在NLP分类任务的模型里。

可直訓ChatGPT類模型!華師大、NUS開源HugNLP框架:一鍵刷榜,全面統一NLP訓練

在训练时,只需要指定下面两个参数,即可以开启Prompt-tuning模式,例如选择p-tuning算法:

--task_type=masked_prompt_ptuning_cls--use_prompt_for_cls
登入後複製

四、Instruction-tuning

在构建通用人工智能之前,必须将不同类型的自然语言处理任务进行范式统一,尤其是在大模型时代。HugNLP为此定义了三种统一范式的思想:

  • 万物皆可生成:将所有NLP任务建模为单向自回归生成,例如GPT-3、ChatGPT等;
  • 万物皆可抽取:将所有NLP任务建模为抽取式机器阅读理解;
  • 万物皆可推断:将所有NLP任务建模为自然语言推断;

基于三种不同的范式统一,HugNLP推出两个核心产品,分别是:

  • HugChat:基于生成式Instruction的中小型ChatGPT类模型;
  • HugIE:基于抽取式Instruction的统一信息抽取框架;

4.1 HugChat:基于Causal Language Modeling的生成式对话模型

最近ChatGPT火爆全球,为了让研究者可以训练自己的ChatGPT,HugNLP框架集成了基于生成式Instruction的训练产品——HugChat,其支持各种类型的单向生成式模型的训练,例如GPT-2、GPT-Neo、OPT、GLM、LLaMA等。

在8张V100 32G的条件下,可训练OPT-13B大模型。HugAILab团队公布了大约200万条英文和300万条中文的对话数据,以用于模型训练。例如训练GPT-2(XL),可直接执行脚本:

bash ./application/instruction_prompting/HugChat/supervised_finetuning/run_causal_instruction_gpt2_xl.sh
登入後複製

使用基于HugNLP训练的GPT-2(1.3B)模型可以轻松地完成对话任务。只需要执行如下命令即可玩转HugChat:

python3 applications/instruction_prompting/HugChat/hugchat.py
登入後複製

例如可以写套磁信邮件:

可直訓ChatGPT類模型!華師大、NUS開源HugNLP框架:一鍵刷榜,全面統一NLP訓練

再例如搜索谷歌地球的相关信息:

可直訓ChatGPT類模型!華師大、NUS開源HugNLP框架:一鍵刷榜,全面統一NLP訓練

也可以实现编写简单的代码(1.3B的模型具备此能力已经很惊叹了!):

可直訓ChatGPT類模型!華師大、NUS開源HugNLP框架:一鍵刷榜,全面統一NLP訓練

HugNLP目前正在开发其他类型的Decoder-only大模型,相关信息和开源内容如下表所示:

可直訓ChatGPT類模型!華師大、NUS開源HugNLP框架:一鍵刷榜,全面統一NLP訓練

HugChat后期将推出垂直领域的大模型解决方案,同时将与OpenAI API进行融合,推出大模型服务框架。

4.2 HugIE:基于Global Pointer的统一信息抽取框架

信息抽取(Information Extraction)旨在从非结构化的文本中抽取出结构化信息,是构建知识库的重要步骤之一。通常信息抽取包括两个核心步骤,分别是命名实体识别(Named Entity Recognition)和关系抽取(Relation Extraction)。

可直訓ChatGPT類模型!華師大、NUS開源HugNLP框架:一鍵刷榜,全面統一NLP訓練

我们基于HugNLP研发一款HugIE产品,旨在实现统一信息处理。其主要核心包括如下几个部分:

  • 将实体识别和关系抽取,统一为新的范式——基于抽取式阅读理解的方法。HugIE采用Global Pointer模型实现信息抽取;
  • 定义Instruction Prompt,指导模型生成需要抽取的内容;
  • 采用多任务训练的方法训练;

HugIE目前已经开源了模型:https://huggingface.co/wjn1996/wjn1996-hugnlp-hugie-large-zh 可以基于HugNLP框架使用HugIE抽取模型,如下图所示:

可直訓ChatGPT類模型!華師大、NUS開源HugNLP框架:一鍵刷榜,全面統一NLP訓練

五、In-Context Learning

In-Context Learning(ICL) 首次由GPT-3提出,其旨在挑选少量的标注样本作为提示(Prompt),从而在形式上促使大模型生成目标答案。ICL的优势在于无需对参数进行更新,即可实现惊艳的效果。

可直訓ChatGPT類模型!華師大、NUS開源HugNLP框架:一鍵刷榜,全面統一NLP訓練

HugNLP框架集成了ICL,主要涉及到样本的挑选和预测结果的校准两个部分:

  • 样本挑选:默认为从训练集中随机挑选样本,后期将会开发一系列样本挑选的算法,例如聚类、K近邻、余弦相似度等;
  • 预测校准:由于所挑选标注样本与待预测样本存在分布差异,需要对预测的概率分布进行校准,这里采用Calibrate Before Use方法,如下图,可以对预测分布进行校准,提高预测效果。

可直訓ChatGPT類模型!華師大、NUS開源HugNLP框架:一鍵刷榜,全面統一NLP訓練

目前ICL已经集成在HugNLP里,只需要指定下面参数即可:

--user_defined="data_name=xxx num_incontext_example=4 l=1 use_calibrate=True"--use_prompt_for_cls
登入後複製

六、半监督Self-training

半监督旨在同时结合标注数据和无标签数据来训练NLP任务。Self-training是一种简单但有效的迭代式训练方法,其通过Teacher模型先获取伪标签,对伪标签进行去噪后,再训练Student模型。Self-training方法传统上存在着较多噪声,可能会削弱训练结果。

为了提高性能,HugNLP引入成熟的Uncertainty-aware Self-training技术。框架图如下所示:

可直訓ChatGPT類模型!華師大、NUS開源HugNLP框架:一鍵刷榜,全面統一NLP訓練

其采用了来自贝叶斯推断中的MC Dropout技术,即对Teacher模型执行 次推理,每次推理开启Dropout开关,从而得到若干与Teacher模型满足独立同分布的模型预测。

基于这些预测结果,可以通过信息熵的变化量得到Teacher模型对无标签数据的不确定性量化指标(即BALD算法),核心公式如下:

可直訓ChatGPT類模型!華師大、NUS開源HugNLP框架:一鍵刷榜,全面統一NLP訓練

进行多次DC Dropout的代码实现如下(详见hugnlp_trainer.py):

y_T = list()for i in tqdm(range(T)): y_pred = [] for step, inputs in enumerate(unlabeled_dataloader): _, logits, __ = self.prediction_step(model, inputs, prediction_loss_only, ignore_keys=ignore_keys) y_pred.extend(logits.detach().cpu().numpy().tolist()) predict_proba = torch.softmax(torch.Tensor(y_pred).to(logits.device), -1) y_T.append(predict_proba.detach().cpu().numpy().tolist()) y_T = np.array(y_T)#compute mean y_mean = np.mean(y_T, axis=0)BALD算法实现如下:def get_BALD_acquisition(y_T):expected_entropy = - np.mean(np.sum(y_T * np.log(y_T + 1e-10), axis=-1), axis=0)expected_p = np.mean(y_T, axis=0)entropy_expected_p = - np.sum(expected_p * np.log(expected_p + 1e-10), axis=-1)return (entropy_expected_p - expected_entropy)
登入後複製

HugNLP使用半监督模式,只需要做两件事:

(1)执行脚本时添加参数:

--use_semi
登入後複製

(2)在指定的数据集目录下,存放unlabeled data文件。

七、其他更丰富的应用

HugNLP has developed numerous applications as listed below, and there are many more exciting applications currently under development.。HugNLP欢迎有志之士加入HugAILab参与开源开发工作。

可直訓ChatGPT類模型!華師大、NUS開源HugNLP框架:一鍵刷榜,全面統一NLP訓練

可直訓ChatGPT類模型!華師大、NUS開源HugNLP框架:一鍵刷榜,全面統一NLP訓練

可直訓ChatGPT類模型!華師大、NUS開源HugNLP框架:一鍵刷榜,全面統一NLP訓練

可直訓ChatGPT類模型!華師大、NUS開源HugNLP框架:一鍵刷榜,全面統一NLP訓練


以上是可直訓ChatGPT類模型!華師大、NUS開源HugNLP框架:一鍵刷榜,全面統一NLP訓練的詳細內容。更多資訊請關注PHP中文網其他相關文章!

相關標籤:
來源:51cto.com
本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
熱門教學
更多>
最新下載
更多>
網站特效
網站源碼
網站素材
前端模板