目錄
Transformer的不足
Megabyte強在哪
未來將會如何
首頁 科技週邊 人工智慧 比Transformer快4成! Meta發表全新Megabyte模型,解決算力損耗硬傷

比Transformer快4成! Meta發表全新Megabyte模型,解決算力損耗硬傷

May 30, 2023 pm 08:04 PM
速度 模型

Transformer無疑是過去幾年內機器學習領域最受歡迎的模型。

自2017年在論文「Attention is All You Need」中提出之後,這個新的網路結構,刷爆了各大翻譯任務,同時創造了多項新的記錄。

比Transformer快4成! Meta發表全新Megabyte模型,解決算力損耗硬傷

但Transformer在處理長位元組序列時有個硬傷,就是算力損耗嚴重,而Meta的研究人員的最新成果可以很好地解決這一缺陷。

他們推出了全新的模型架構,能跨多種格式產生超過100萬個token,並超越GPT-4等模型背後的現有 Transformer架構的功能。

這個模型被稱為「兆位元組」(Megabyte),是一種多尺度解碼器架構(Multi-scale Decoder Architecture),可以對超過一百萬位元組的序列進行端對端可微分建模。

比Transformer快4成! Meta發表全新Megabyte模型,解決算力損耗硬傷

論文連結:https://arxiv.org/abs/2305.07185

Megabyte為什麼比Transformer強,就得先看看Transformer的不足之處在哪。

Transformer的不足

迄今為止幾類高效能的生成式AI模型,如OpenAI的GPT-4、Google的Bard,都是基於Transformer架構的模型。

但Meta的研究團隊認為,流行的Transformer架構可能達到其閾值,其中主要理由是Transformer設計中固有的兩個重要缺陷:

- 隨著輸入和輸出位元組長度的增加,自註意力的成本也迅速增加,如輸入的音樂、圖像或視訊檔案通常包含數兆位元組,然而大型解碼器(LLM)通常只使用幾千個上下文標記

- 前饋網路透過一系列數學運算和轉換來幫助語言模型理解和處理單詞,但在每個位置的基礎上難以實現可擴展性,這些網路獨立地對字元組或位置進行操作,從而導致大量的計算開銷

Megabyte強在哪

##相比Transformer,Megabyte模型展示了一種獨特的不同架構,將輸入和輸出序列劃分為patch而不是單一token。

如下圖,在每個patch中,本地AI模型產生結果,而全域模型管理和協調所有patch的最終輸出。

比Transformer快4成! Meta發表全新Megabyte模型,解決算力損耗硬傷

首先,位元組序列被分割成固定大小的patch,大致類似token,這個模型由三個部分組成:

(1) patch嵌入器:透過無損地連接每個位元組的嵌入來簡單地編碼patch

(2) 一個全域模型:一個輸入和輸出patch表示的大型自迴歸變換器

#(3) 一個本地模型:一個預測patch中位元組的小型自迴歸模型

研究人員觀察到,對於多數任務而言字節預測都相對容易(如完成給定前幾個字的單字),這意味著每個字節的大型網路是不必要的,並且可以使用較小的模型進行內部預測。

這種方法解決了當今AI模型中普遍存在的可擴展性挑戰,Megabyte 模型的patch系統允許單一前饋網路在包含多個token的patch上運行,從而有效解決了自註意力縮放問題。

其中,Megabyte架構對長序列建模的Transformer進行了三項主要改進:

- 二次自註意力(Sub -quadratic self-attention)

大多數關於長序列模型的工作都集中在減輕自註意力的二次成本上,而Megabyte將長序列分解為兩個較短的序列,即使對於長序列也仍然易於處理。

- patch前饋層(Per-patch feedforward layers)

在GPT-3大小的模型中,超過98%的FLOPS用於計算位置前饋層,Megabyte每個patch使用大型前饋層,以相同的成本實現更大、性能更強的模型。在patch大小為P的情況下,基線轉換器將使用具有m個參數的相同前饋層P次,兆位元組可以以相同的成本使用具有mP個參數的層一次。

- 解碼中的平行性(Parallelism in Decoding)

Transformers必須在生成期間串行執行所有計算,因為每個時間步的輸入是前一個時間步的輸出,透過並行產生patch的表示,Megabyte允許在生成過程中實現更大的並行性。

例如,具有1.5B參數的Megabyte模型產生序列的速度比標準的350MTransformer快40%,同時在使用相同的計算量進行訓練時還能改善困惑度。

比Transformer快4成! Meta發表全新Megabyte模型,解決算力損耗硬傷

Megabyte遠優於其他模型,並提供與在子詞上訓練的sota 模型競爭的結果

相較之下,OpenAI 的GPT-4有32,000個token的限制,而Anthropic的Claude有100,000個token的限制。

此外,在運算效率方面,在固定模型大小和序列長度範圍內,Megabyte比同等大小的Transformers和Linear Transformers使用更少的token,允許以相同的計算成本使用更大的模型。

比Transformer快4成! Meta發表全新Megabyte模型,解決算力損耗硬傷


#總之,這些改進使我們能夠在相同的運算預算下訓練更大、性能更好的模型,擴展到非常長的序列,並提高部署期間的生成速度。

未來將會如何

隨著AI軍備競賽進行地如火如荼,模型表現越來越強,參數也越來越高。

雖然GPT-3.5在175B個參數上進行了訓練,但有人猜測功能更強大的GPT-4在1萬億個參數上進行了訓練。

OpenAI的CEO Sam Altman最近也建議轉變策略,他表示公司正在考慮捨棄對龐大模型的訓練,而專注於其他性能的優化。

他將AI模型的未來等同於iPhone晶片,而大多數消費者對原始技術規格一無所知。

Meta的研究人員相信他們的創新架構來得正是時候,但也承認還有其他最佳化途徑。

例如採用修補技術的更有效率的編碼器模型、將序列分解為更小塊的解碼模型以及將序列預處理為壓縮token等,並且可以擴展現有Transformer架構的能力以建構新世代模型。

前特斯拉AI總監Andrej Karpathy也在這篇論文中發表了看法,他在推特上寫道:

#

這是非常有希望的,每個人都應該希望我們能在大模型中丟掉標記化,也不需要那些過長位元組的序列。

比Transformer快4成! Meta發表全新Megabyte模型,解決算力損耗硬傷

#

以上是比Transformer快4成! Meta發表全新Megabyte模型,解決算力損耗硬傷的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

AI Hentai Generator

AI Hentai Generator

免費產生 AI 無盡。

熱門文章

R.E.P.O.能量晶體解釋及其做什麼(黃色晶體)
1 個月前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳圖形設置
1 個月前 By 尊渡假赌尊渡假赌尊渡假赌
威爾R.E.P.O.有交叉遊戲嗎?
1 個月前 By 尊渡假赌尊渡假赌尊渡假赌

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

全球最強開源 MoE 模型來了,中文能力比肩 GPT-4,價格僅 GPT-4-Turbo 的近百分之一 全球最強開源 MoE 模型來了,中文能力比肩 GPT-4,價格僅 GPT-4-Turbo 的近百分之一 May 07, 2024 pm 04:13 PM

想像一下,一個人工智慧模型,不僅擁有超越傳統運算的能力,還能以更低的成本實現更有效率的效能。這不是科幻,DeepSeek-V2[1],全球最強開源MoE模型來了。 DeepSeek-V2是一個強大的專家混合(MoE)語言模型,具有訓練經濟、推理高效的特點。它由236B個參數組成,其中21B個參數用於啟動每個標記。與DeepSeek67B相比,DeepSeek-V2效能更強,同時節省了42.5%的訓練成本,減少了93.3%的KV緩存,最大生成吞吐量提高到5.76倍。 DeepSeek是一家探索通用人工智

AI顛覆數學研究!菲爾茲獎得主、華裔數學家領銜11篇頂刊論文|陶哲軒轉贊 AI顛覆數學研究!菲爾茲獎得主、華裔數學家領銜11篇頂刊論文|陶哲軒轉贊 Apr 09, 2024 am 11:52 AM

AI,的確正在改變數學。最近,一直十分關注這個議題的陶哲軒,轉發了最近一期的《美國數學學會通報》(BulletinoftheAmericanMathematicalSociety)。圍繞著「機器會改變數學嗎?」這個話題,許多數學家發表了自己的觀點,全程火花四射,內容硬核,精彩紛呈。作者陣容強大,包括菲爾茲獎得主AkshayVenkatesh、華裔數學家鄭樂雋、紐大電腦科學家ErnestDavis等多位業界知名學者。 AI的世界已經發生了天翻地覆的變化,要知道,其中許多文章是在一年前提交的,而在這一

Google狂喜:JAX性能超越Pytorch、TensorFlow!或成GPU推理訓練最快選擇 Google狂喜:JAX性能超越Pytorch、TensorFlow!或成GPU推理訓練最快選擇 Apr 01, 2024 pm 07:46 PM

谷歌力推的JAX在最近的基準測試中表現已經超過Pytorch和TensorFlow,7項指標排名第一。而且測試並不是JAX性能表現最好的TPU上完成的。雖然現在在開發者中,Pytorch依然比Tensorflow更受歡迎。但未來,也許有更多的大型模型會基於JAX平台進行訓練和運行。模型最近,Keras團隊為三個後端(TensorFlow、JAX、PyTorch)與原生PyTorch實作以及搭配TensorFlow的Keras2進行了基準測試。首先,他們為生成式和非生成式人工智慧任務選擇了一組主流

你好,電動Atlas!波士頓動力機器人復活,180度詭異動作嚇到馬斯克 你好,電動Atlas!波士頓動力機器人復活,180度詭異動作嚇到馬斯克 Apr 18, 2024 pm 07:58 PM

波士頓動力Atlas,正式進入電動機器人時代!昨天,液壓Atlas剛「含淚」退出歷史舞台,今天波士頓動力就宣布:電動Atlas上崗。看來,在商用人形機器人領域,波士頓動力是下定決心要跟特斯拉硬剛一把了。新影片放出後,短短十幾小時內,就已經有一百多萬觀看。舊人離去,新角色登場,這是歷史的必然。毫無疑問,今年是人形機器人的爆發年。網友銳評:機器人的進步,讓今年看起來像人類的開幕式動作、自由度遠超人類,但這真不是恐怖片?影片一開始,Atlas平靜地躺在地上,看起來應該是仰面朝天。接下來,讓人驚掉下巴

替代MLP的KAN,被開源專案擴展到卷積了 替代MLP的KAN,被開源專案擴展到卷積了 Jun 01, 2024 pm 10:03 PM

本月初,來自MIT等機構的研究者提出了一種非常有潛力的MLP替代方法—KAN。 KAN在準確性和可解釋性方面表現優於MLP。而且它能以非常少的參數量勝過以更大參數量運行的MLP。例如,作者表示,他們用KAN以更小的網路和更高的自動化程度重現了DeepMind的結果。具體來說,DeepMind的MLP有大約300,000個參數,而KAN只有約200個參數。 KAN與MLP一樣具有強大的數學基礎,MLP基於通用逼近定理,而KAN基於Kolmogorov-Arnold表示定理。如下圖所示,KAN在邊上具

特斯拉機器人進廠打工,馬斯克:手的自由度今年將達到22個! 特斯拉機器人進廠打工,馬斯克:手的自由度今年將達到22個! May 06, 2024 pm 04:13 PM

特斯拉機器人Optimus最新影片出爐,已經可以在工廠裡打工了。正常速度下,它分揀電池(特斯拉的4680電池)是這樣的:官方還放出了20倍速下的樣子——在小小的「工位」上,揀啊揀啊揀:這次放出的影片亮點之一在於Optimus在廠子裡完成這項工作,是完全自主的,全程沒有人為的干預。而且在Optimus的視角之下,它還可以把放歪了的電池重新撿起來放置,主打一個自動糾錯:對於Optimus的手,英偉達科學家JimFan給出了高度的評價:Optimus的手是全球五指機器人裡最靈巧的之一。它的手不僅有觸覺

FisheyeDetNet:首個以魚眼相機為基礎的目標偵測演算法 FisheyeDetNet:首個以魚眼相機為基礎的目標偵測演算法 Apr 26, 2024 am 11:37 AM

目標偵測在自動駕駛系統當中是一個比較成熟的問題,其中行人偵測是最早得以部署演算法之一。在多數論文當中已經進行了非常全面的研究。然而,利用魚眼相機進行環視的距離感知相對來說研究較少。由於徑向畸變大,標準的邊界框表示在魚眼相機當中很難實施。為了緩解上述描述,我們探索了擴展邊界框、橢圓、通用多邊形設計為極座標/角度表示,並定義一個實例分割mIOU度量來分析這些表示。所提出的具有多邊形形狀的模型fisheyeDetNet優於其他模型,並同時在用於自動駕駛的Valeo魚眼相機資料集上實現了49.5%的mAP

牛津大學最新! Mickey:3D中的2D影像匹配SOTA! (CVPR\'24) 牛津大學最新! Mickey:3D中的2D影像匹配SOTA! (CVPR\'24) Apr 23, 2024 pm 01:20 PM

寫在前面項目連結:https://nianticlabs.github.io/mickey/給定兩張圖片,可以透過建立圖片之間的對應關係來估計它們之間的相機姿態。通常,這些對應關係是二維到二維的,而我們估計的姿態在尺度上是不確定的。一些應用,例如隨時隨地實現即時增強現實,需要尺度度量的姿態估計,因此它們依賴外部的深度估計器來恢復尺度。本文提出了MicKey,這是一個關鍵點匹配流程,能夠夠預測三維相機空間中的度量對應關係。透過學習跨影像的三維座標匹配,我們能夠在沒有深度測試的情況下推斷度量相對

See all articles