首頁 資料庫 Redis 如何使用php+redis實作布隆過濾器

如何使用php+redis實作布隆過濾器

May 31, 2023 am 08:13 AM
php redis

先定義一個hash函數集合類,這些hash函數不一定都用到,實際上32位hash值的用3個就可以了,具體的數量可以根據你的位序列總量和你需要存入的量決定,上面已經給出最佳值。

class BloomFilterHash
{
    /**
     * 由Justin Sobel编写的按位散列函数
     */
    public function JSHash($string, $len = null)
    {
        $hash = 1315423911;
        $len || $len = strlen($string);
        for ($i=0; $i<$len; $i++) {
            $hash ^= (($hash << 5) + ord($string[$i]) + ($hash >> 2));
        }
        return ($hash % 0xFFFFFFFF) & 0xFFFFFFFF;
    }

    /**
     * 该哈希算法基于AT&T贝尔实验室的Peter J. Weinberger的工作。
     * Aho Sethi和Ulman编写的“编译器(原理,技术和工具)”一书建议使用采用此特定算法中的散列方法的散列函数。
     */
    public function PJWHash($string, $len = null)
    {
        $bitsInUnsignedInt = 4 * 8; //(unsigned int)(sizeof(unsigned int)* 8);
        $threeQuarters = ($bitsInUnsignedInt * 3) / 4;
        $oneEighth = $bitsInUnsignedInt / 8;
        $highBits = 0xFFFFFFFF << (int) ($bitsInUnsignedInt - $oneEighth);
        $hash = 0;
        $test = 0;
        $len || $len = strlen($string);
        for($i=0; $i<$len; $i++) {
            $hash = ($hash << (int) ($oneEighth)) + ord($string[$i]); } $test = $hash & $highBits; if ($test != 0) { $hash = (($hash ^ ($test >> (int)($threeQuarters))) & (~$highBits));
        }
        return ($hash % 0xFFFFFFFF) & 0xFFFFFFFF;
    }

    /**
     * 类似于PJW Hash功能,但针对32位处理器进行了调整。它是基于UNIX的系统上的widley使用哈希函数。
     */
    public function ELFHash($string, $len = null)
    {
        $hash = 0;
        $len || $len = strlen($string);
        for ($i=0; $i<$len; $i++) {
            $hash = ($hash << 4) + ord($string[$i]); $x = $hash & 0xF0000000; if ($x != 0) { $hash ^= ($x >> 24);
            }
            $hash &= ~$x;
        }
        return ($hash % 0xFFFFFFFF) & 0xFFFFFFFF;
    }

    /**
     * 这个哈希函数来自Brian Kernighan和Dennis Ritchie的书“The C Programming Language”。
     * 它是一个简单的哈希函数,使用一组奇怪的可能种子,它们都构成了31 .... 31 ... 31等模式,它似乎与DJB哈希函数非常相似。
     */
    public function BKDRHash($string, $len = null)
    {
        $seed = 131;  # 31 131 1313 13131 131313 etc..
        $hash = 0;
        $len || $len = strlen($string);
        for ($i=0; $i<$len; $i++) {
            $hash = (int) (($hash * $seed) + ord($string[$i]));
        }
        return ($hash % 0xFFFFFFFF) & 0xFFFFFFFF;
    }

    /**
     * 这是在开源SDBM项目中使用的首选算法。
     * 哈希函数似乎对许多不同的数据集具有良好的总体分布。它似乎适用于数据集中元素的MSB存在高差异的情况。
     */
    public function SDBMHash($string, $len = null)
    {
        $hash = 0;
        $len || $len = strlen($string);
        for ($i=0; $i<$len; $i++) {
            $hash = (int) (ord($string[$i]) + ($hash << 6) + ($hash << 16) - $hash);
        }
        return ($hash % 0xFFFFFFFF) & 0xFFFFFFFF;
    }

    /**
     * 由Daniel J. Bernstein教授制作的算法,首先在usenet新闻组comp.lang.c上向世界展示。
     * 它是有史以来发布的最有效的哈希函数之一。
     */
    public function DJBHash($string, $len = null)
    {
        $hash = 5381;
        $len || $len = strlen($string);
        for ($i=0; $i<$len; $i++) {
            $hash = (int) (($hash << 5) + $hash) + ord($string[$i]);
        }
        return ($hash % 0xFFFFFFFF) & 0xFFFFFFFF;
    }

    /**
     * Donald E. Knuth在“计算机编程艺术第3卷”中提出的算法,主题是排序和搜索第6.4章。
     */
    public function DEKHash($string, $len = null)
    {
        $len || $len = strlen($string);
        $hash = $len;
        for ($i=0; $i<$len; $i++) {
            $hash = (($hash << 5) ^ ($hash >> 27)) ^ ord($string[$i]);
        }
        return ($hash % 0xFFFFFFFF) & 0xFFFFFFFF;
    }

    /**
     * 参考 http://www.isthe.com/chongo/tech/comp/fnv/
     */
    public function FNVHash($string, $len = null)
    {
        $prime = 16777619; //32位的prime 2^24 + 2^8 + 0x93 = 16777619
        $hash = 2166136261; //32位的offset
        $len || $len = strlen($string);
        for ($i=0; $i<$len; $i++) {
            $hash = (int) ($hash * $prime) % 0xFFFFFFFF;
            $hash ^= ord($string[$i]);
        }
        return ($hash % 0xFFFFFFFF) & 0xFFFFFFFF;
    }
}
登入後複製

接著就是連接redis來進行操作

/**
 * 使用redis实现的布隆过滤器
 */
abstract class BloomFilterRedis
{
    /**
     * 需要使用一个方法来定义bucket的名字
     */
    protected $bucket;

    protected $hashFunction;

    public function __construct($config, $id)
    {
        if (!$this->bucket || !$this->hashFunction) {
            throw new Exception("需要定义bucket和hashFunction", 1);
        }
        $this->Hash = new BloomFilterHash;
        $this->Redis = new YourRedis; //假设这里你已经连接好了
    }

    /**
     * 添加到集合中
     */
    public function add($string)
    {
        $pipe = $this->Redis->multi();
        foreach ($this->hashFunction as $function) {
            $hash = $this->Hash->$function($string);
            $pipe->setBit($this->bucket, $hash, 1);
        }
        return $pipe->exec();
    }

    /**
     * 查询是否存在, 如果曾经写入过,必定回true,如果没写入过,有一定几率会误判为存在
     */
    public function exists($string)
    {
        $pipe = $this->Redis->multi();
        $len = strlen($string);
        foreach ($this->hashFunction as $function) {
            $hash = $this->Hash->$function($string, $len);
            $pipe = $pipe->getBit($this->bucket, $hash);
        }
        $res = $pipe->exec();
        foreach ($res as $bit) {
            if ($bit == 0) {
                return false;
            }
        }
        return true;
    }

}
登入後複製

上面定義的是一個抽象類,如果要使用,可以根據具體的業務來使用。例如下面是一個過濾重複內容的過濾器。

/**
 * 重复内容过滤器
 * 该布隆过滤器总位数为2^32位, 判断条数为2^30条. hash函数最优为3个.(能够容忍最多的hash函数个数)
 * 使用的三个hash函数为
 * BKDR, SDBM, JSHash
 *
 * 注意, 在存储的数据量到2^30条时候, 误判率会急剧增加, 因此需要定时判断过滤器中的位为1的的数量是否超过50%, 超过则需要清空.
 */
class FilteRepeatedComments extends BloomFilterRedis
{
    /**
     * 表示判断重复内容的过滤器
     * @var string
     */
    protected $bucket = &#39;rptc&#39;;

    protected $hashFunction = array(&#39;BKDRHash&#39;, &#39;SDBMHash&#39;, &#39;JSHash&#39;);
}
登入後複製

以上是如何使用php+redis實作布隆過濾器的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

PHP的目的:構建動態網站 PHP的目的:構建動態網站 Apr 15, 2025 am 12:18 AM

PHP用於構建動態網站,其核心功能包括:1.生成動態內容,通過與數據庫對接實時生成網頁;2.處理用戶交互和表單提交,驗證輸入並響應操作;3.管理會話和用戶認證,提供個性化體驗;4.優化性能和遵循最佳實踐,提升網站效率和安全性。

PHP和Python:解釋了不同的範例 PHP和Python:解釋了不同的範例 Apr 18, 2025 am 12:26 AM

PHP主要是過程式編程,但也支持面向對象編程(OOP);Python支持多種範式,包括OOP、函數式和過程式編程。 PHP適合web開發,Python適用於多種應用,如數據分析和機器學習。

PHP和Python:代碼示例和比較 PHP和Python:代碼示例和比較 Apr 15, 2025 am 12:07 AM

PHP和Python各有優劣,選擇取決於項目需求和個人偏好。 1.PHP適合快速開發和維護大型Web應用。 2.Python在數據科學和機器學習領域佔據主導地位。

在PHP和Python之間進行選擇:指南 在PHP和Python之間進行選擇:指南 Apr 18, 2025 am 12:24 AM

PHP適合網頁開發和快速原型開發,Python適用於數據科學和機器學習。 1.PHP用於動態網頁開發,語法簡單,適合快速開發。 2.Python語法簡潔,適用於多領域,庫生態系統強大。

PHP:處理數據庫和服務器端邏輯 PHP:處理數據庫和服務器端邏輯 Apr 15, 2025 am 12:15 AM

PHP在數據庫操作和服務器端邏輯處理中使用MySQLi和PDO擴展進行數據庫交互,並通過會話管理等功能處理服務器端邏輯。 1)使用MySQLi或PDO連接數據庫,執行SQL查詢。 2)通過會話管理等功能處理HTTP請求和用戶狀態。 3)使用事務確保數據庫操作的原子性。 4)防止SQL注入,使用異常處理和關閉連接來調試。 5)通過索引和緩存優化性能,編寫可讀性高的代碼並進行錯誤處理。

為什麼要使用PHP?解釋的優點和好處 為什麼要使用PHP?解釋的優點和好處 Apr 16, 2025 am 12:16 AM

PHP的核心優勢包括易於學習、強大的web開發支持、豐富的庫和框架、高性能和可擴展性、跨平台兼容性以及成本效益高。 1)易於學習和使用,適合初學者;2)與web服務器集成好,支持多種數據庫;3)擁有如Laravel等強大框架;4)通過優化可實現高性能;5)支持多種操作系統;6)開源,降低開發成本。

PHP和Python:深入了解他們的歷史 PHP和Python:深入了解他們的歷史 Apr 18, 2025 am 12:25 AM

PHP起源於1994年,由RasmusLerdorf開發,最初用於跟踪網站訪問者,逐漸演變為服務器端腳本語言,廣泛應用於網頁開發。 Python由GuidovanRossum於1980年代末開發,1991年首次發布,強調代碼可讀性和簡潔性,適用於科學計算、數據分析等領域。

PHP:服務器端腳本語言的簡介 PHP:服務器端腳本語言的簡介 Apr 16, 2025 am 12:18 AM

PHP是一種服務器端腳本語言,用於動態網頁開發和服務器端應用程序。 1.PHP是一種解釋型語言,無需編譯,適合快速開發。 2.PHP代碼嵌入HTML中,易於網頁開發。 3.PHP處理服務器端邏輯,生成HTML輸出,支持用戶交互和數據處理。 4.PHP可與數據庫交互,處理表單提交,執行服務器端任務。

See all articles