首頁 > 科技週邊 > 人工智慧 > 大衛復活!英偉達再造「神經朗基羅」,3D重建肌肉紋理肉眼可見

大衛復活!英偉達再造「神經朗基羅」,3D重建肌肉紋理肉眼可見

WBOY
發布: 2023-06-03 10:16:35
轉載
895 人瀏覽過

今天,英偉達再造了16世紀的米開朗基羅「Neuralangelo」。

快看,Neuralangelo「復刻」出3D版的著名雕像大衛,大理石的細節、紋理栩栩如生。

大衛復活!英偉達再造「神經朗基羅」,3D重建肌肉紋理肉眼可見

要知道,收藏在佛羅倫斯美術學院的大衛雕像,僅身高3.96米,加上基座都有5.5米。

它甚至可以重建一棟建築物的內部和外部結構,屋頂瓦片、玻璃窗格、還有各種細節都一再出現。

大衛復活!英偉達再造「神經朗基羅」,3D重建肌肉紋理肉眼可見

這一切,都是「神經朗基羅」(Neuralangelo)的魔法。

來自英偉達和約翰霍普金斯大學的研究人員提出的新型AI模型,利用神經網路重建3D物件。

最新研究已被CVPR 2023錄取。

大衛復活!英偉達再造「神經朗基羅」,3D重建肌肉紋理肉眼可見

論文地址:https://research.nvidia.com/labs/dir/neuralangelo/paper.pdf

#特別是,Neuralangelo可以從手機視頻,無人機拍攝的視頻重建「高保真的大規模場景」。

那豈不是未來,就能輕易地把一座城市、甚至外太空的視頻,變成一個沉浸式的世界,再裝進遊戲去體驗。

網友驚呼,英偉達黑了「矩陣」世界!

大衛復活!英偉達再造「神經朗基羅」,3D重建肌肉紋理肉眼可見

甚至,還有人稱,蘋果XR技術,再加上Neuralangelo,就能創造「new worlds」了。

大衛復活!英偉達再造「神經朗基羅」,3D重建肌肉紋理肉眼可見

#效果示範

大衛復活!英偉達再造「神經朗基羅」,3D重建肌肉紋理肉眼可見

大衛復活!英偉達再造「神經朗基羅」,3D重建肌肉紋理肉眼可見

##英偉達的總部

大衛復活!英偉達再造「神經朗基羅」,3D重建肌肉紋理肉眼可見

#破舊的卡車

大衛復活!英偉達再造「神經朗基羅」,3D重建肌肉紋理肉眼可見

###Ignatius的雕像############重建3D場景####### ##先前的AI模型在重建3D場景時,往往難以準確捕捉重複的紋理模式、均勻的色彩以及強烈的色彩變化。 ############為此,團隊提出了一個將多重解析度3D雜湊網格的表徵能力和神經表面渲染結合的全新方法-Neuralangelo。 #####################

去年,英伟达研究人员曾创造了一种新工具3D MoMa,将照片变成3D物体易如反掌。

大衛復活!英偉達再造「神經朗基羅」,3D重建肌肉紋理肉眼可見

NeuralAngelo建立在这一概念的基础上,允许导入更大、更详细的空间和对象。而它特别之处在于,可以准确捕捉重复的纹理模式、同质的颜色和强烈的颜色变化。

通过采用「即时神经图形基元」,也就是NVIDIA Instant NeRF技术的核心,Neuralangelo由此可以捕捉更细微的细节。

团队的方法依赖于2个关键要素:

(1)用于计算高阶导数作为平滑操作的数值梯度;

(2)在控制不同细节级别的哈希网格上进行由粗到细的优化。

即使没有辅助深度,Neuralangelo也能有效地从多视图图像中恢复密集3D表面结构,其保真度显著超过了以往的方法,使得能够从RGB视频捕捉中重建详细的大规模场景。

构建NeuralAngelo

NeuralAngelo模型是在多分辨率哈希编码,以及基于SDF的体积渲染上进行构建。

第一步:使用数值梯度来计算高阶导数

通过使用与哈希网格空间分辨率匹配的步长的数值梯度,可以优化超越局部单元。与解析梯度相比,数值梯度对SDF起到了平滑操作的作用。

大衛復活!英偉達再造「神經朗基羅」,3D重建肌肉紋理肉眼可見

第二步:逐步细化细节层次

通过逐步减小数值梯度的步长,并启用更高分辨率的哈希网格,优化的效果可以更好地恢复大面积的光滑表面和精细的几何细节。这种学习过程能够逐步提高细节的层次感。

大衛復活!英偉達再造「神經朗基羅」,3D重建肌肉紋理肉眼可見

第三步:优化

NeuralAngelo使用三个优化目标:

大衛復活!英偉達再造「神經朗基羅」,3D重建肌肉紋理肉眼可見

RGB合成损失

大衛復活!英偉達再造「神經朗基羅」,3D重建肌肉紋理肉眼可見:输入图像和合成图像之间的RGB重建损失。

Eikonal损失

大衛復活!英偉達再造「神經朗基羅」,3D重建肌肉紋理肉眼可見:对底层SDF进行正则化处理,使其表面法线为单位正则。

曲率损失

大衛復活!英偉達再造「神經朗基羅」,3D重建肌肉紋理肉眼可見:对底层SDF进行正则化处理,使平均曲率不会任意变大。

「神經朗基羅」建構好了,那麼它又是如何運作的呢?

大衛復活!英偉達再造「神經朗基羅」,3D重建肌肉紋理肉眼可見

可以說,Neuralangelo還原了米開朗基羅刻畫大衛的整個過程:

· 首先,模型會從2D影片中選擇幾幀從不同角度拍攝的物件/場景的畫面,並由此「看到」其深度、大小和形狀。這個過程就像雕塑藝術家一開始會從多個角度構圖那樣。

· 然後,模型會創造一個粗糙的3D場景表徵,就像藝術家開始鑿刻主體的形狀。

· 最後,模型會優化渲染以提高細節的清晰度,就像藝術家透過精心修飾來模仿織物或人形的紋理。

在DPU基準定性比較中, Neuralangelo產生更準確和更高保真度的表面。

大衛復活!英偉達再造「神經朗基羅」,3D重建肌肉紋理肉眼可見

如下是Neuralangelo在DTU資料集中的定量結果,模型獲得了很好的重建精度和影像合成品質。

大衛復活!英偉達再造「神經朗基羅」,3D重建肌肉紋理肉眼可見

在不同的從粗糙到精細優化方案定性比較中,當使用分析梯度AG和AG P,物體粗糙表面還有偽影。

當使用數位梯度(NG)時,能夠重建一個比較好的粗糙表面,細節也被平滑。

而英偉達的解決方案(NG P)能夠產生光滑的表面,以及精細的細節。

大衛復活!英偉達再造「神經朗基羅」,3D重建肌肉紋理肉眼可見

最終的結果是一個可以在虛擬實境應用、數位孿生或機器人開發中使用的3D物件或大規模場景。

英偉達表示,Neuralangelo將複雜材料的紋理,包括屋頂瓦片的粗糙度、大理石的光滑度,從2D視頻轉化為3D物體的能力,顯著超越了以往的方法。

英偉達研究部資深主任、論文作者Ming-Yu Liu對這項研究的意義給出了暢想:

「Neuralangelo提供的3D重建能力將為創作者帶來巨大好處,幫助他們在數位世界中重建真實世界。這個工具最終將使開發人員能夠將精細的物體——不論是小型雕像,還是大型建築——導入電玩遊戲或工業數位孿生的虛擬環境中。

創意的專業人士可以將這些3D物件導入到設計應用中,進一步編輯,以供藝術、電子遊戲開發、機器人技術和工業數位孿生等領域使用。

大衛復活!英偉達再造「神經朗基羅」,3D重建肌肉紋理肉眼可見

作者介紹

Zhaoshuo Li(李趙碩)

大衛復活!英偉達再造「神經朗基羅」,3D重建肌肉紋理肉眼可見

李趙碩目前還是約翰霍普金斯大學的電腦科學博士生,導師是Mathias Unberath教授、Russell H Taylor教授。

他對電腦視覺、電腦圖形學、深度學習有濃厚的興趣,研究重點是從圖像中重現運動和結構。

另外,他還有非常多的嗜好,是攝影師、心理健康促進者、寵物狗的愛好者、還是衝浪者、跳傘者、滑雪板運動員…

Chen-Hsuan Lin

大衛復活!英偉達再造「神經朗基羅」,3D重建肌肉紋理肉眼可見

Chen-Hsuan Lin是NVIDIA Research的研究科學家,從事電腦視覺、電腦圖形學和人工智慧方面的工作。

他在卡內基美隆大學獲得了機器人學博士學位,並獲得英偉達研究生獎學金。此前,他也曾在Facebook AI Research和Adobe Research實習。

Lin對解決3D重建、視圖合成和3D內容生產的問題非常感興趣。其研究旨在透過從網路規模的視覺數據中學習,賦予人工智慧系統人類水平的3D感知和想像能力,朝向真正的3D空間智慧邁進。

網友熱評

英偉達科學家Jim Fan表示,

為了讓你了解3D建模的人工智慧發展速度:該領域在3年內從左邊(原始的NeRF重建的網格)到右邊(英偉達的Neuralangelo)。

將現實傳送到高保真模擬中不再是個夢想。

大衛復活!英偉達再造「神經朗基羅」,3D重建肌肉紋理肉眼可見

新的Neuralangelo模型簡直是野獸,英偉達決定淘汰我們,R.I.P.攝影測量軟體。

大衛復活!英偉達再造「神經朗基羅」,3D重建肌肉紋理肉眼可見

簡直就像是數字世界的「米開朗基羅」。

大衛復活!英偉達再造「神經朗基羅」,3D重建肌肉紋理肉眼可見

還有網友表示想知道,用它的成本是多少?

我們可以在工廠使用無人機,然後將影片發送到這個模型,做一個數位孿生,並使用它來優化我們的流程。

大衛復活!英偉達再造「神經朗基羅」,3D重建肌肉紋理肉眼可見

對於這項技術的意義,網友認為這對遊戲產業影響將是巨大的。

大衛復活!英偉達再造「神經朗基羅」,3D重建肌肉紋理肉眼可見

以上是大衛復活!英偉達再造「神經朗基羅」,3D重建肌肉紋理肉眼可見的詳細內容。更多資訊請關注PHP中文網其他相關文章!

相關標籤:
來源:51cto.com
本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
熱門教學
更多>
最新下載
更多>
網站特效
網站源碼
網站素材
前端模板