探索ThinkGPT:將AI轉變為強大思維機器的前沿Python庫
ThinkGPT是一款創新的Python庫,它增強了大型語言模型的能力,使它們能夠更有效地思考、推理和行動。如果你渴望將ThinkGPT整合到你的Python腳本中,並利用它先進的功能,那麼請閱讀這篇文章。本文將引導你在Python專案中使用ThinkGPT的第一步。
我們將探討ThinkGPT的核心功能,包括其先進的記憶能力、自我完善機制和高階推理能力。你將能夠發現這個創新的庫如何改變AI開發局面的,以及學習如何利用它的力量來增強自己的專案。
ThinkGPT託管在GitHub上。程式碼庫可以在以下網址中找到:https://github.com/alaeddine-13/thinkgpt。
ThinkGPT的主要特點
- #記憶:ThinkGPT使大型語言模型(LLM)能夠記住經驗並學習新的概念。
- 自我完善:此功能可讓模型透過解決批評、修復問題和完善其理解來改進生成的內容。
- 抽象:鼓勵LLM從範例或觀察中概括出規則,幫助創造壓縮的知識,更好地適應模型有限的上下文長度。
- 推理:使LLM能夠根據現有的資訊做出有根據的猜測。
- 自然語言條件:使用者可以輕鬆地用自然語言表達任務和條件,使模型能夠做出智慧決策。
- 易於設定和Pythonic API:由於DocArray的存在,ThinkGPT提供了一個極其簡單的設定流程和一個Pythonic API。
安裝
安裝ThinkGPT很簡單,可以使用pip進行安裝:
pip install git+https://github.com/alaeddine-13/thinkgpt.git
該指令將直接從GitHub程式碼庫安裝ThinkGPT函式庫。
在Python腳本中使用ThinkGPT的第一步
安裝完成後,你就可以開始在Python腳本中使用ThinkGPT。要做到這一點,只需從thinkgpt.llm模組中導入ThinkGPT類別並創建該類別的一個新實例即可:
from thinkgpt.llm import ThinkGPT llm = ThinkGPT(model_name="gpt-3.5-turbo")
這段程式碼片段使用指定的模型(在本例中為“ gpt-3.5-turbo」)初始化了一個新的ThinkGPT實例。
有了ThinkGPT實例,你現在可以使用memorize()方法來教導你的AI模型新的概念或事實:
llm.memorize(['DocArray is a library for representing, sending, and storing multi-modal data.'])
為了呼叫記憶的訊息,你可以使用remember()方法:
memory = llm.remember('DocArray definition')
一旦AI模型學習了一些訊息,你就可以使用predict()方法基於記憶資料進行預測或回答問題:
llm.predict('what is DocArray ?', remember=memory)
這段程式碼片段使用remember()方法來檢索記憶訊息,並將其回饋給predict()方法來回答問題。
實際範例
ThinkGPT附帶了一些易於理解的使用範例。對應的Python腳本可以在程式碼庫的example資料夾中找到:
讓我們深入研究其中提供的範例:replay_expand_memory.py:
from thinkgpt.llm import ThinkGPT llm = ThinkGPT(model_name="gpt-3.5-turbo") # 加载旧内存 old_memory = [ "Klaus Mueller is writing a research paper", "Klaus Mueller enjoys reading a book on gentrification", "Klaus Mueller is conversing with Ayesha Khan about exercising" ] # 教给LLM旧的记忆 llm.memorize(old_memory) # 在旧记忆的基础上诱发反思 new_observations = llm.infer(facts=llm.remember()) print('new thoughts:') print('\n'.join(new_observations)) llm.memorize(new_observations)
在這個ThinkGPT範例腳本中,目標是基於Klaus Mueller的現有資訊使用ThinkGPT庫誘導新的思考或觀察。
- 首先,該腳本從thinkgpt.llm模組中匯入ThinkGPT類別。
- 建立一個新的ThinkGPT實例,並使用「gpt-3.5-turbo」模型進行初始化。
- 定義old_memory變量,其中包含有關Klaus Mueller的三個陳述,表示先前的知識。
- 使用memorize()方法來教導大型語言模型(LLM)儲存在old_memory中的資訊。
- 呼叫infer()方法,並將facts參數設定為remember()方法的結果。這會指示LLM基於先前記憶的資訊誘導新的觀察或思考。
- 新誘導出的觀察結果在「new thoughts:」標籤下輸出到控制台。
- 最後,再次呼叫memorize()方法,將新的觀察結果儲存在LLM的記憶體中,使其能夠在未來的互動中建立對Klaus Mueller的理解。
在執行腳本並查看結果之前,我們需要取得OpenAI API金鑰並設定對應的環境變數OPENAI_API_KEY的金鑰值。
要取得OpenAI API金鑰,請依照以下簡單步驟操作:
- 请访问OpenAI网站https://www.openai.com/。
- 如果没有帐户,请注册一个帐户。在首页右上角点击“注册”,并按照注册流程操作。
- 注册或登录后,通过点击页面顶部的“API”或访问https://www.openai.com/api/来导航到API部分。
- 查看可用的API定价计划,并选择适合你需求的计划。某些计划可能提供带有有限使用的免费访问权限,而其他计划根据你的要求和预算提供不同级别的访问权限。
- 选择一个计划后,将提供你的唯一API密钥。请确保保密,因为它授予你的账户使用限制和特权的API访问权限。 在命令行中使用以下命令来设置OpenAI API密钥:
export OPENAI_API_KEY="YOUR OPENAI API KEY"
现在我们已经准备好执行脚本了,只需输入以下命令:
python replay_expand_memory.py
然后,你应该能够看到类似于以下的结果:
总结
ThinkGPT是一款强大的Python库,它通过添加先进的记忆、自我完善、抽象和推理功能,增强了大型语言模型的能力。它对用户友好的安装过程和Pythonic API使它成为许多AI项目的有价值的补充。通过探索本文提供的实际示例,你可以利用ThinkGPT的能力,彻底改变你的AI思考方式、得出结论和采取行动的方式。
以上是探索ThinkGPT:將AI轉變為強大思維機器的前沿Python庫的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

熱門話題

想像一下,一個人工智慧模型,不僅擁有超越傳統運算的能力,還能以更低的成本實現更有效率的效能。這不是科幻,DeepSeek-V2[1],全球最強開源MoE模型來了。 DeepSeek-V2是一個強大的專家混合(MoE)語言模型,具有訓練經濟、推理高效的特點。它由236B個參數組成,其中21B個參數用於啟動每個標記。與DeepSeek67B相比,DeepSeek-V2效能更強,同時節省了42.5%的訓練成本,減少了93.3%的KV緩存,最大生成吞吐量提高到5.76倍。 DeepSeek是一家探索通用人工智

本月初,來自MIT等機構的研究者提出了一種非常有潛力的MLP替代方法—KAN。 KAN在準確性和可解釋性方面表現優於MLP。而且它能以非常少的參數量勝過以更大參數量運行的MLP。例如,作者表示,他們用KAN以更小的網路和更高的自動化程度重現了DeepMind的結果。具體來說,DeepMind的MLP有大約300,000個參數,而KAN只有約200個參數。 KAN與MLP一樣具有強大的數學基礎,MLP基於通用逼近定理,而KAN基於Kolmogorov-Arnold表示定理。如下圖所示,KAN在邊上具

波士頓動力Atlas,正式進入電動機器人時代!昨天,液壓Atlas剛「含淚」退出歷史舞台,今天波士頓動力就宣布:電動Atlas上崗。看來,在商用人形機器人領域,波士頓動力是下定決心要跟特斯拉硬剛一把了。新影片放出後,短短十幾小時內,就已經有一百多萬觀看。舊人離去,新角色登場,這是歷史的必然。毫無疑問,今年是人形機器人的爆發年。網友銳評:機器人的進步,讓今年看起來像人類的開幕式動作、自由度遠超人類,但這真不是恐怖片?影片一開始,Atlas平靜地躺在地上,看起來應該是仰面朝天。接下來,讓人驚掉下巴

AI,的確正在改變數學。最近,一直十分關注這個議題的陶哲軒,轉發了最近一期的《美國數學學會通報》(BulletinoftheAmericanMathematicalSociety)。圍繞著「機器會改變數學嗎?」這個話題,許多數學家發表了自己的觀點,全程火花四射,內容硬核,精彩紛呈。作者陣容強大,包括菲爾茲獎得主AkshayVenkatesh、華裔數學家鄭樂雋、紐大電腦科學家ErnestDavis等多位業界知名學者。 AI的世界已經發生了天翻地覆的變化,要知道,其中許多文章是在一年前提交的,而在這一

谷歌力推的JAX在最近的基準測試中表現已經超過Pytorch和TensorFlow,7項指標排名第一。而且測試並不是JAX性能表現最好的TPU上完成的。雖然現在在開發者中,Pytorch依然比Tensorflow更受歡迎。但未來,也許有更多的大型模型會基於JAX平台進行訓練和運行。模型最近,Keras團隊為三個後端(TensorFlow、JAX、PyTorch)與原生PyTorch實作以及搭配TensorFlow的Keras2進行了基準測試。首先,他們為生成式和非生成式人工智慧任務選擇了一組主流

今天我想分享一個最新的研究工作,這項研究來自康乃狄克大學,提出了一種將時間序列資料與自然語言處理(NLP)大模型在隱空間上對齊的方法,以提高時間序列預測的效果。此方法的關鍵在於利用隱空間提示(prompt)來增強時間序列預測的準確性。論文標題:S2IP-LLM:SemanticSpaceInformedPromptLearningwithLLMforTimeSeriesForecasting下載網址:https://arxiv.org/pdf/2403.05798v1.pdf1、問題背景大模型

這篇論文探討了在自動駕駛中,從不同視角(如透視圖和鳥瞰圖)準確檢測物體的問題,特別是如何有效地從透視圖(PV)到鳥瞰圖(BEV)空間轉換特徵,這一轉換是透過視覺轉換(VT)模組實施的。現有的方法大致分為兩種策略:2D到3D和3D到2D轉換。 2D到3D的方法透過預測深度機率來提升密集的2D特徵,但深度預測的固有不確定性,尤其是在遠處區域,可能會引入不準確性。而3D到2D的方法通常使用3D查詢來採樣2D特徵,並透過Transformer學習3D和2D特徵之間對應關係的注意力權重,這增加了計算和部署的

特斯拉機器人Optimus最新影片出爐,已經可以在工廠裡打工了。正常速度下,它分揀電池(特斯拉的4680電池)是這樣的:官方還放出了20倍速下的樣子——在小小的「工位」上,揀啊揀啊揀:這次放出的影片亮點之一在於Optimus在廠子裡完成這項工作,是完全自主的,全程沒有人為的干預。而且在Optimus的視角之下,它還可以把放歪了的電池重新撿起來放置,主打一個自動糾錯:對於Optimus的手,英偉達科學家JimFan給出了高度的評價:Optimus的手是全球五指機器人裡最靈巧的之一。它的手不僅有觸覺
