目錄
ThinkGPT的主要特點
安裝
在Python腳本中使用ThinkGPT的第一步
實際範例
总结
首頁 科技週邊 人工智慧 探索ThinkGPT:將AI轉變為強大思維機器的前沿Python庫

探索ThinkGPT:將AI轉變為強大思維機器的前沿Python庫

Jun 06, 2023 pm 02:13 PM
模型

ThinkGPT是一款創新的Python庫,它增強了大型語言模型的能力,使它們能夠更有效地思考、推理和行動。如果你渴望將ThinkGPT整合到你的Python腳本中,並利用它先進的功能,那麼請閱讀這篇文章。本文將引導你在Python專案中使用ThinkGPT的第一步。

我們將探討ThinkGPT的核心功能,包括其先進的記憶能力、自我完善機制和高階推理能力。你將能夠發現這個創新的庫如何改變AI開發局面的,以及學習如何利用它的力量來增強自己的專案。

ThinkGPT託管在GitHub上。程式碼庫可以在以下網址中找到:https://github.com/alaeddine-13/thinkgpt。

探索ThinkGPT:將AI轉變為強大思維機器的前沿Python庫

ThinkGPT的主要特點

  1. #記憶:ThinkGPT使大型語言模型(LLM)能夠記住經驗並學習新的概念。
  2. 自我完善:此功能可讓模型透過解決批評、修復問題和完善其理解來改進生成的內容。
  3. 抽象:鼓勵LLM從範例或觀察中概括出規則,幫助創造壓縮的知識,更好地適應模型有限的上下文長度。
  4. 推理:使LLM能夠根據現有的資訊做出有根據的猜測。
  5. 自然語言條件:使用者可以輕鬆地用自然語言表達任務和條件,使模型能夠做出智慧決策。
  6. 易於設定和Pythonic API:由於DocArray的存在,ThinkGPT提供了一個極其簡單的設定流程和一個Pythonic API。

安裝

安裝ThinkGPT很簡單,可以使用pip進行安裝:

pip install git+https://github.com/alaeddine-13/thinkgpt.git
登入後複製

該指令將直接從GitHub程式碼庫安裝ThinkGPT函式庫。

在Python腳本中使用ThinkGPT的第一步

安裝完成後,你就可以開始在Python腳本中使用ThinkGPT。要做到這一點,只需從thinkgpt.llm模組中導入ThinkGPT類別並創建該類別的一個新實例即可:

from thinkgpt.llm import ThinkGPT llm = ThinkGPT(model_name="gpt-3.5-turbo")
登入後複製

這段程式碼片段使用指定的模型(在本例中為“ gpt-3.5-turbo」)初始化了一個新的ThinkGPT實例。

有了ThinkGPT實例,你現在可以使用memorize()方法來教導你的AI模型新的概念或事實:

llm.memorize(['DocArray is a library for representing, sending, and storing multi-modal data.'])
登入後複製

為了呼叫記憶的訊息,你可以使用remember()方法:

memory = llm.remember('DocArray definition')
登入後複製

一旦AI模型學習了一些訊息,你就可以使用predict()方法基於記憶資料進行預測或回答問題:

llm.predict('what is DocArray ?', remember=memory)
登入後複製

這段程式碼片段使用remember()方法來檢索記憶訊息,並將其回饋給predict()方法來回答問題。

實際範例

ThinkGPT附帶了一些易於理解的使用範例。對應的Python腳本可以在程式碼庫的example資料夾中找到:

探索ThinkGPT:將AI轉變為強大思維機器的前沿Python庫

讓我們深入研究其中提供的範例:replay_expand_memory.py:

from thinkgpt.llm import ThinkGPT llm = ThinkGPT(model_name="gpt-3.5-turbo") # 加载旧内存 old_memory = [ "Klaus Mueller is writing a research paper", "Klaus Mueller enjoys reading a book on gentrification", "Klaus Mueller is conversing with Ayesha Khan about exercising" ] # 教给LLM旧的记忆 llm.memorize(old_memory) # 在旧记忆的基础上诱发反思 new_observations = llm.infer(facts=llm.remember()) print('new thoughts:') print('\n'.join(new_observations)) llm.memorize(new_observations)
登入後複製

在這個ThinkGPT範例腳本中,目標是基於Klaus Mueller的現有資訊使用ThinkGPT庫誘導新的思考或觀察。

  1. 首先,該腳本從thinkgpt.llm模組中匯入ThinkGPT類別。
  2. 建立一個新的ThinkGPT實例,並使用「gpt-3.5-turbo」模型進行初始化。
  3. 定義old_memory變量,其中包含有關Klaus Mueller的三個陳述,表示先前的知識。
  4. 使用memorize()方法來教導大型語言模型(LLM)儲存在old_memory中的資訊。
  5. 呼叫infer()方法,並將facts參數設定為remember()方法的結果。這會指示LLM基於先前記憶的資訊誘導新的觀察或思考。
  6. 新誘導出的觀察結果在「new thoughts:」標籤下輸出到控制台。
  7. 最後,再次呼叫memorize()方法,將新的觀察結果儲存在LLM的記憶體中,使其能夠在未來的互動中建立對Klaus Mueller的理解。

在執行腳本並查看結果之前,我們需要取得OpenAI API金鑰並設定對應的環境變數OPENAI_API_KEY的金鑰值。

要取得OpenAI API金鑰,請依照以下簡單步驟操作:

  • 请访问OpenAI网站https://www.openai.com/。
  • 如果没有帐户,请注册一个帐户。在首页右上角点击“注册”,并按照注册流程操作。
  • 注册或登录后,通过点击页面顶部的“API”或访问https://www.openai.com/api/来导航到API部分。
  • 查看可用的API定价计划,并选择适合你需求的计划。某些计划可能提供带有有限使用的免费访问权限,而其他计划根据你的要求和预算提供不同级别的访问权限。
  • 选择一个计划后,将提供你的唯一API密钥。请确保保密,因为它授予你的账户使用限制和特权的API访问权限。 在命令行中使用以下命令来设置OpenAI API密钥:
export OPENAI_API_KEY="YOUR OPENAI API KEY"
登入後複製

现在我们已经准备好执行脚本了,只需输入以下命令:

python replay_expand_memory.py
登入後複製

然后,你应该能够看到类似于以下的结果:

探索ThinkGPT:將AI轉變為強大思維機器的前沿Python庫

总结

ThinkGPT是一款强大的Python库,它通过添加先进的记忆、自我完善、抽象和推理功能,增强了大型语言模型的能力。它对用户友好的安装过程和Pythonic API使它成为许多AI项目的有价值的补充。通过探索本文提供的实际示例,你可以利用ThinkGPT的能力,彻底改变你的AI思考方式、得出结论和采取行动的方式。

以上是探索ThinkGPT:將AI轉變為強大思維機器的前沿Python庫的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

AI Hentai Generator

AI Hentai Generator

免費產生 AI 無盡。

熱門文章

R.E.P.O.能量晶體解釋及其做什麼(黃色晶體)
3 週前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳圖形設置
3 週前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您聽不到任何人,如何修復音頻
3 週前 By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解鎖Myrise中的所有內容
3 週前 By 尊渡假赌尊渡假赌尊渡假赌

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

全球最強開源 MoE 模型來了,中文能力比肩 GPT-4,價格僅 GPT-4-Turbo 的近百分之一 全球最強開源 MoE 模型來了,中文能力比肩 GPT-4,價格僅 GPT-4-Turbo 的近百分之一 May 07, 2024 pm 04:13 PM

想像一下,一個人工智慧模型,不僅擁有超越傳統運算的能力,還能以更低的成本實現更有效率的效能。這不是科幻,DeepSeek-V2[1],全球最強開源MoE模型來了。 DeepSeek-V2是一個強大的專家混合(MoE)語言模型,具有訓練經濟、推理高效的特點。它由236B個參數組成,其中21B個參數用於啟動每個標記。與DeepSeek67B相比,DeepSeek-V2效能更強,同時節省了42.5%的訓練成本,減少了93.3%的KV緩存,最大生成吞吐量提高到5.76倍。 DeepSeek是一家探索通用人工智

替代MLP的KAN,被開源專案擴展到卷積了 替代MLP的KAN,被開源專案擴展到卷積了 Jun 01, 2024 pm 10:03 PM

本月初,來自MIT等機構的研究者提出了一種非常有潛力的MLP替代方法—KAN。 KAN在準確性和可解釋性方面表現優於MLP。而且它能以非常少的參數量勝過以更大參數量運行的MLP。例如,作者表示,他們用KAN以更小的網路和更高的自動化程度重現了DeepMind的結果。具體來說,DeepMind的MLP有大約300,000個參數,而KAN只有約200個參數。 KAN與MLP一樣具有強大的數學基礎,MLP基於通用逼近定理,而KAN基於Kolmogorov-Arnold表示定理。如下圖所示,KAN在邊上具

你好,電動Atlas!波士頓動力機器人復活,180度詭異動作嚇到馬斯克 你好,電動Atlas!波士頓動力機器人復活,180度詭異動作嚇到馬斯克 Apr 18, 2024 pm 07:58 PM

波士頓動力Atlas,正式進入電動機器人時代!昨天,液壓Atlas剛「含淚」退出歷史舞台,今天波士頓動力就宣布:電動Atlas上崗。看來,在商用人形機器人領域,波士頓動力是下定決心要跟特斯拉硬剛一把了。新影片放出後,短短十幾小時內,就已經有一百多萬觀看。舊人離去,新角色登場,這是歷史的必然。毫無疑問,今年是人形機器人的爆發年。網友銳評:機器人的進步,讓今年看起來像人類的開幕式動作、自由度遠超人類,但這真不是恐怖片?影片一開始,Atlas平靜地躺在地上,看起來應該是仰面朝天。接下來,讓人驚掉下巴

AI顛覆數學研究!菲爾茲獎得主、華裔數學家領銜11篇頂刊論文|陶哲軒轉贊 AI顛覆數學研究!菲爾茲獎得主、華裔數學家領銜11篇頂刊論文|陶哲軒轉贊 Apr 09, 2024 am 11:52 AM

AI,的確正在改變數學。最近,一直十分關注這個議題的陶哲軒,轉發了最近一期的《美國數學學會通報》(BulletinoftheAmericanMathematicalSociety)。圍繞著「機器會改變數學嗎?」這個話題,許多數學家發表了自己的觀點,全程火花四射,內容硬核,精彩紛呈。作者陣容強大,包括菲爾茲獎得主AkshayVenkatesh、華裔數學家鄭樂雋、紐大電腦科學家ErnestDavis等多位業界知名學者。 AI的世界已經發生了天翻地覆的變化,要知道,其中許多文章是在一年前提交的,而在這一

Google狂喜:JAX性能超越Pytorch、TensorFlow!或成GPU推理訓練最快選擇 Google狂喜:JAX性能超越Pytorch、TensorFlow!或成GPU推理訓練最快選擇 Apr 01, 2024 pm 07:46 PM

谷歌力推的JAX在最近的基準測試中表現已經超過Pytorch和TensorFlow,7項指標排名第一。而且測試並不是JAX性能表現最好的TPU上完成的。雖然現在在開發者中,Pytorch依然比Tensorflow更受歡迎。但未來,也許有更多的大型模型會基於JAX平台進行訓練和運行。模型最近,Keras團隊為三個後端(TensorFlow、JAX、PyTorch)與原生PyTorch實作以及搭配TensorFlow的Keras2進行了基準測試。首先,他們為生成式和非生成式人工智慧任務選擇了一組主流

時間序列預測 NLP大模型新作:為時序預測自動產生隱式Prompt 時間序列預測 NLP大模型新作:為時序預測自動產生隱式Prompt Mar 18, 2024 am 09:20 AM

今天我想分享一個最新的研究工作,這項研究來自康乃狄克大學,提出了一種將時間序列資料與自然語言處理(NLP)大模型在隱空間上對齊的方法,以提高時間序列預測的效果。此方法的關鍵在於利用隱空間提示(prompt)來增強時間序列預測的準確性。論文標題:S2IP-LLM:SemanticSpaceInformedPromptLearningwithLLMforTimeSeriesForecasting下載網址:https://arxiv.org/pdf/2403.05798v1.pdf1、問題背景大模型

DualBEV:大幅超越BEVFormer、BEVDet4D,開卷! DualBEV:大幅超越BEVFormer、BEVDet4D,開卷! Mar 21, 2024 pm 05:21 PM

這篇論文探討了在自動駕駛中,從不同視角(如透視圖和鳥瞰圖)準確檢測物體的問題,特別是如何有效地從透視圖(PV)到鳥瞰圖(BEV)空間轉換特徵,這一轉換是透過視覺轉換(VT)模組實施的。現有的方法大致分為兩種策略:2D到3D和3D到2D轉換。 2D到3D的方法透過預測深度機率來提升密集的2D特徵,但深度預測的固有不確定性,尤其是在遠處區域,可能會引入不準確性。而3D到2D的方法通常使用3D查詢來採樣2D特徵,並透過Transformer學習3D和2D特徵之間對應關係的注意力權重,這增加了計算和部署的

特斯拉機器人進廠打工,馬斯克:手的自由度今年將達到22個! 特斯拉機器人進廠打工,馬斯克:手的自由度今年將達到22個! May 06, 2024 pm 04:13 PM

特斯拉機器人Optimus最新影片出爐,已經可以在工廠裡打工了。正常速度下,它分揀電池(特斯拉的4680電池)是這樣的:官方還放出了20倍速下的樣子——在小小的「工位」上,揀啊揀啊揀:這次放出的影片亮點之一在於Optimus在廠子裡完成這項工作,是完全自主的,全程沒有人為的干預。而且在Optimus的視角之下,它還可以把放歪了的電池重新撿起來放置,主打一個自動糾錯:對於Optimus的手,英偉達科學家JimFan給出了高度的評價:Optimus的手是全球五指機器人裡最靈巧的之一。它的手不僅有觸覺

See all articles