目錄
LLM可以阻止客户满意度下跌
LLM使自动化比以往任何时候都更容易、更好
呼叫中心自动化减少了ChatGPT风险
首頁 科技週邊 人工智慧 在客戶服務領域,和ChatGPT有關的變革已經開始

在客戶服務領域,和ChatGPT有關的變革已經開始

Jun 07, 2023 pm 03:53 PM
chatgpt 大型語言模型

在客戶服務領域,和ChatGPT有關的變革已經開始

近年来,越来越多的企业采用人工智能技术来自动化联络中心,以处理数百万客户的电话、聊天和短信。现在,ChatGPT的卓越沟通技巧正在与集成到业务特定系统例如内部知识库和CRM的关键能力相融合。

大规模语言模型(LLM)的应用可以增强自动化联系中心,使其能够像人工客服一样,从头到尾地解决客户请求,并已经取得了显著的成效。另一方面,随着越来越多的客户意识到ChatGPT的类人的功能,可以想象他们会开始对传统系统感到更加沮丧,这些传统系统往往需要他们等待45分钟才能更新其信用卡信息。

但不要害怕。虽然对早期采用者来说,使用人工智能来解决客户问题似乎已经过时了,但实际上,时机刚刚好。

LLM可以阻止客户满意度下跌

客户服务行业的满意度已降至几十年来的最低水平,原因是座位不足和需求增加。LLM的兴起势必使得人工智能成为每个试图重建客户忠诚度的董事会的核心议题。

那些转向昂贵的外包选择、或完全取消联络中心的企业突然间看到了一条可持续发展的道路。

蓝图已经画好。人工智能可以帮助实现呼叫中心的三个主要目标:在第一个环上解决客户问题,降低总体成本,减少座席的负担(并通过这样做增加座席的保留率)。

在过去几年里,企业级联络中心已经部署了人工智能来处理他们最常见的请求(例如,计费、账户管理,甚至呼出呼叫),而且这一趋势似乎将在2023年继续下去。

通过这样做,他们已经能够减少等待时间,使他们的座席能够专注于创收或增值电话,并从旨在使客户远离座席和解决方案的过时策略中解脱出来。

所有这些都可以节省成本,Gartner预测称,到2026年,人工智能的部署将使联络中心的成本降低800多亿美元。

LLM使自动化比以往任何时候都更容易、更好

LLM是在大量的公共数据集上训练的。这种对世界的广泛了解非常适合客户服务。他们能够准确地理解客户的实际需求,不受来电者话语方式或表述方式的影响。

LLM已被整合进现有的自动化平台中,有效提升了平台理解非结构化人类对话的能力,同时减少了错误的出现。这将带来更好的解决率、更少的对话步骤、更短的呼叫时间和更少的座席需求。

顾客可以用任意自然的句子与机器对话,包括提出多个问题,要求机器等待或通过文本发送信息。LLM的一个重要改进在于改进了呼叫解决方案,在不需要与座席交谈的情况下,让更多的客户得到了他们所需的答案。

LLM还大大减少了定制和部署人工智能所需的时间。有了合适的API,一个人手不足的联络中心可以在几周内启动并运行一个解决方案,而不必手动训练人工智能来了解客户可能提出的各种请求。

联系中心面临着巨大的挑战,必须同时满足严格的SLA指标并将呼叫持续时间保持在最低水平。有了LLM,他们不仅能接听更多的电话,还能端到端解决问题。

呼叫中心自动化减少了ChatGPT风险

虽然LLM给人留下了深刻的印象,但也有很多记录在案的不恰当的回答和“幻觉”案例——在机器不知道该说什么的情况下,它会编造答案。

对于企业来说,这就是为什么像ChatGPT这样的LLM不能直接与客户连接的首要原因,更不用说将其与特定的业务系统、规则和平台集成。

现有的人工智能平台,如Dialpad、Replicant和Five9,正在为联络中心提供防护机制,以更好地利用LLM的力量,同时降低风险。这些方案符合SOC2、HIPAA和PCI标准,以确保客户的个人信息获得最大限度的保护。

而且,由于对话是针对每个用例专门配置的,联络中心可以控制他们的机器所说或写的每个单词,从而消除了由于提示输入(即用户试图“欺骗”LLM的情况)而导致的不可预测的风险。

在快速变化的人工智能世界中,联络中心比以往任何时候都有更多的技术解决方案需要评估。

客户的期望正在提高,ChatGPT 级别的服务将很快成为普遍标准。所有的迹象都表明,客户服务将成为那些在过去的技术革命中一直被忽视的行业中最受益的一方。

以上是在客戶服務領域,和ChatGPT有關的變革已經開始的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

ChatGPT 現在允許免費用戶使用 DALL-E 3 產生每日限制的圖像 ChatGPT 現在允許免費用戶使用 DALL-E 3 產生每日限制的圖像 Aug 09, 2024 pm 09:37 PM

DALL-E 3 於 2023 年 9 月正式推出,是比其前身大幅改進的車型。它被認為是迄今為止最好的人工智慧圖像生成器之一,能夠創建具有複雜細節的圖像。然而,在推出時,它不包括

為什麼大型語言模型都在使用 SwiGLU 作為激活函數? 為什麼大型語言模型都在使用 SwiGLU 作為激活函數? Apr 08, 2024 pm 09:31 PM

如果你一直在關注大型語言模型的架構,你可能會在最新的模型和研究論文中看到「SwiGLU」這個詞。 SwiGLU可以說是在大語言模型中最常使用的激活函數,我們這篇文章就來對它進行詳細的介紹。 SwiGLU其實是2020年Google提出的激活函數,它結合了SWISH和GLU兩者的特徵。 SwiGLU的中文全名為“雙向門控線性單元”,它將SWISH和GLU兩種激活函數進行了優化和結合,以提高模型的非線性表達能力。 SWISH是一種非常普遍的激活函數,它在大語言模型中得到廣泛應用,而GLU則在自然語言處理任務中表現出

微調真的能讓LLM學到新東西嗎:引入新知識可能讓模型產生更多的幻覺 微調真的能讓LLM學到新東西嗎:引入新知識可能讓模型產生更多的幻覺 Jun 11, 2024 pm 03:57 PM

大型語言模型(LLM)是在龐大的文字資料庫上訓練的,在那裡它們獲得了大量的實際知識。這些知識嵌入到它們的參數中,然後可以在需要時使用。這些模型的知識在訓練結束時被「具體化」。在預訓練結束時,模型實際上停止學習。對模型進行對齊或進行指令調優,讓模型學習如何充分利用這些知識,以及如何更自然地回應使用者的問題。但是有時模型知識是不夠的,儘管模型可以透過RAG存取外部內容,但透過微調使用模型適應新的領域被認為是有益的。這種微調是使用人工標註者或其他llm創建的輸入進行的,模型會遇到額外的實際知識並將其整合

手機怎麼安裝chatgpt 手機怎麼安裝chatgpt Mar 05, 2024 pm 02:31 PM

安裝步驟:1、在ChatGTP官網或手機商店下載ChatGTP軟體;2、開啟後在設定介面中,選擇語言為中文;3、在對局介面中,選擇人機對局並設定中文相譜;4 、開始後在聊天視窗中輸入指令,即可與軟體互動。

可視化FAISS向量空間並調整RAG參數提高結果精度 可視化FAISS向量空間並調整RAG參數提高結果精度 Mar 01, 2024 pm 09:16 PM

隨著開源大型語言模型的效能不斷提高,編寫和分析程式碼、推薦、文字摘要和問答(QA)對的效能都有了很大的提高。但當涉及QA時,LLM通常會在未訓練資料的相關的問題上有所欠缺,許多內部文件都保存在公司內部,以確保合規性、商業機密或隱私。當查詢這些文件時,會使得LLM產生幻覺,產生不相關、捏造或不一致的內容。一種處理這項挑戰的可行技術是檢索增強生成(RAG)。它涉及透過引用訓練資料來源以外的權威知識庫來增強回應的過程,以提升生成的品質和準確性。 RAG系統包括一個檢索系統,用於從語料庫中檢索相關文檔片段

ChatGPT與Python的完美結合:打造智慧客服聊天機器人 ChatGPT與Python的完美結合:打造智慧客服聊天機器人 Oct 27, 2023 pm 06:00 PM

ChatGPT與Python的完美結合:打造智慧客服聊天機器人引言:在當今資訊時代,智慧客服系統已成為企業與客戶之間重要的溝通工具。而為了提供更好的客戶服務體驗,許多企業開始轉向採用聊天機器人的方式來完成客戶諮詢、問題解答等任務。在這篇文章中,我們將介紹如何使用OpenAI的強大模型ChatGPT和Python語言結合,來打造一個智慧客服聊天機器人,以提高

使用SPIN技術進行自我博弈微調訓練的LLM的最佳化 使用SPIN技術進行自我博弈微調訓練的LLM的最佳化 Jan 25, 2024 pm 12:21 PM

2024年是大型語言模型(LLM)快速發展的一年。在LLM的訓練中,對齊方法是一個重要的技術手段,其中包括監督微調(SFT)和依賴人類偏好的人類回饋強化學習(RLHF)。這些方法在LLM的發展中起到了至關重要的作用,但是對齊方法需要大量的人工註釋資料。面對這項挑戰,微調成為一個充滿活力的研究領域,研究人員積極致力於開發能夠有效利用人類資料的方法。因此,對齊方法的發展將推動LLM技術的進一步突破。加州大學最近進行了一項研究,介紹了一種名為SPIN(SelfPlayfInetuNing)的新技術。 S

如何使用ChatGPT和Java開發智慧聊天機器人 如何使用ChatGPT和Java開發智慧聊天機器人 Oct 28, 2023 am 08:54 AM

在這篇文章中,我們將介紹如何使用ChatGPT和Java開發智慧聊天機器人,並提供一些具體的程式碼範例。 ChatGPT是由OpenAI開發的困境預測轉換(GenerativePre-trainingTransformer)的最新版本,它是一種基於神經網路的人工智慧技術,可以理解自然語言並產生人類類似的文本。使用ChatGPT,我們可以輕鬆地創建自適應的聊天

See all articles