首頁 > 後端開發 > Python教學 > Python中的EM演算法詳解

Python中的EM演算法詳解

WBOY
發布: 2023-06-09 22:25:55
原創
1965 人瀏覽過

EM演算法是一種統計學習中常用的演算法,在各種領域中都有廣泛的應用。 Python作為一門優秀的程式語言,在實作EM演算法時具有很大的優勢,本文將會對Python中的EM演算法進行詳細的介紹。

首先,我們要了解什麼是EM演算法。 EM演算法全稱為Expectation-Maximization Algorithm,是一種迭代演算法,常用於解決含有隱變數或缺失資料的參數估計問題。 EM演算法的基本思想是透過不斷估計無法觀測到的隱變量或缺失數據,迭代求解參數的最大似然估計。

在Python中實現EM演算法,可以透過分為以下四個步驟:

  1. E步驟

E步驟透過對觀測資料與當前參數的估計計算隱變數的機率分佈。本質上,這個步驟的任務就是將樣本資料分類,將觀測資料進行聚類,得到隱性變數的後驗分佈。在實際操作中,可以藉助一些聚類演算法,如K-means演算法,GMM等。

  1. M步驟

M步驟的任務是透過E步驟層級的分類,來重新估計參數。此時,我們只需要在每個類別的資料分佈中計算參數的最大似然估計,並重新更新參數。這個過程可以用一些最佳化演算法,如梯度下降及共軛梯度演算法來實現。

  1. 重複步驟1、2

接下來,我們需要重複執行步驟1、2,直到參數收斂,得到滿足最大似然估計的參數。這個過程就是EM演算法中的迭代求解步驟。

  1. 計算似然函數值

最後,我們需要計算似然函數值。透過不斷執行EM演算法,更新參數,使得參數估計最大化似然函數。此時,我們可以固定參數,在目前的資料集上計算似然函數值,並將其作為最佳化的目標函數。

透過以上四個步驟得出,我們就可以在Python中實作EM演算法。

程式碼如下:

import numpy as np
import math

class EM:
    def __init__(self, X, k, max_iter=100, eps=1e-6):
        self.X = X
        self.k = k
        self.max_iter = max_iter
        self.eps = eps

    def fit(self):
        n, d = self.X.shape

        # 随机初始化分布概率和均值与协方差矩阵
        weight = np.random.random(self.k)
        weight = weight / weight.sum()
        mean = np.random.rand(self.k, d)
        cov = np.array([np.eye(d)] * self.k)

        llh = 1e-10
        previous_llh = 0

        for i in range(self.max_iter):
            if abs(llh - previous_llh) < self.eps:
                break
            previous_llh = llh

            # 计算隐变量的后验概率,即E步骤
            gamma = np.zeros((n, self.k))
            for j in range(self.k):
                gamma[:,j] = weight[j] * self.__normal_dist(self.X, mean[j], cov[j])
            gamma = gamma / gamma.sum(axis=1, keepdims=True)

            # 更新参数,即M步骤
            Nk = gamma.sum(axis=0)
            weight = Nk / n
            mean = gamma.T @ self.X / Nk.reshape(-1, 1)
            for j in range(self.k):
                x_mu = self.X - mean[j]
                gamma_diag = np.diag(gamma[:,j])
                cov[j] = x_mu.T @ gamma_diag @ x_mu / Nk[j]

            # 计算似然函数值,即求解优化目标函数
            llh = np.log(gamma @ weight).sum()

        return gamma

    def __normal_dist(self, x, mu, cov):
        n = x.shape[1]
        det = np.linalg.det(cov)
        inv = np.linalg.inv(cov)
        norm_const = 1.0 / (math.pow((2*np.pi),float(n)/2) * math.pow(det,1.0/2))
        x_mu = x - mu
        exp_val = math.exp(-0.5 * (x_mu @ inv @ x_mu.T).diagonal())
        return norm_const * exp_val
登入後複製

其中,

X:觀測資料

k:類別數

max_iter:最大迭代步數

eps:收斂閾值

fit()函數:進行參數估計

__normal_dist(): 計算多元高斯分佈函數

透過上述程式碼實現,我們可以在Python中輕鬆實作EM演算法。

在此之上,EM演算法也應用於各種統計學習中的問題,如文字聚類、圖像分割、半監督學習等等。它的靈活性和廣泛性成為了統計學習中經典的演算法之一。尤其針對缺失資料、雜訊資料等問題,EM演算法可以透過對隱變數進行估計來處理,提高了演算法的穩健性。

總之,Python在統計學習的應用越來越廣泛,應該更重視這些經典演算法的程式碼實作、模型訓練。 EM演算法作為重要的演算法之一,在Python中也有很好的最佳化實作。不論對於學習Python或統計學習建模,掌握EM演算法的實作都是亟需之舉。

以上是Python中的EM演算法詳解的詳細內容。更多資訊請關注PHP中文網其他相關文章!

相關標籤:
來源:php.cn
本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
熱門教學
更多>
最新下載
更多>
網站特效
網站源碼
網站素材
前端模板