目錄
資料集預處理
損失函數
首頁 後端開發 Python教學 Python中的GAN演算法實例

Python中的GAN演算法實例

Jun 10, 2023 am 09:53 AM
python 實例 gan演算法

生成對抗網路(GAN,Generative Adversarial Networks)是一種深度學習演算法,它透過兩個神經網路互相競爭的方式來產生新的資料。 GAN被廣泛用於圖像、音訊、文字等領域的生成任務。在本文中,我們將使用Python編寫一個GAN演算法實例,用於產生手寫數位影像。

  1. 資料集準備

我們將使用MNIST資料集作為我們的訓練資料集。 MNIST資料集包含60,000個訓練影像和10,000個測試影像,每個影像都是28x28的灰階影像。我們將使用TensorFlow庫來載入和處理資料集。在載入資料集之前,我們需要安裝TensorFlow庫和NumPy庫。

import tensorflow as tf
import numpy as np

(train_images, train_labels), (test_images, test_labels) = tf.keras.datasets.mnist.load_data()

資料集預處理

train_images = train_images.reshape(train_images.shape[0], 28, 28, 1).astype('float32')
train_images = (train_images - 127.5) / 127. # 將像素值歸一化到[-1, 1]的範圍內

  1. GAN架構設計與訓練

我們的GAN將包括兩個神經網路:一個生成器網路和一個判別器網路。生成器網路將接收雜訊向量作為輸入,並輸出一個28x28的影像。判別器網路將接收28x28的影像作為輸入,並輸出該影像是真實影像的機率。

生成器網路和判別器網路的架構都將採用卷積神經網路(CNN)。在生成器網路中,我們將使用反捲積層(Deconvolutional Layer)來將雜訊向量解碼為一個28x28的影像。在判別器網路中,我們將以卷積層(Convolutional Layer)來對輸入影像進行分類。

生成器網路的輸入是長度為100的雜訊向量。我們將透過使用tf.keras.Sequential函數來堆疊網路層。

def make_generator_model():

model = tf.keras.Sequential()
model.add(tf.keras.layers.Dense(7*7*256, use_bias=False, input_shape=(100,)))
model.add(tf.keras.layers.BatchNormalization())
model.add(tf.keras.layers.LeakyReLU())

model.add(tf.keras.layers.Reshape((7, 7, 256)))
assert model.output_shape == (None, 7, 7, 256) # 注意:batch size没有限制

model.add(tf.keras.layers.Conv2DTranspose(128, (5, 5), strides=(1, 1), padding='same', use_bias=False))
assert model.output_shape == (None, 7, 7, 128)
model.add(tf.keras.layers.BatchNormalization())
model.add(tf.keras.layers.LeakyReLU())

model.add(tf.keras.layers.Conv2DTranspose(64, (5, 5), strides=(2, 2), padding='same', use_bias=False))
assert model.output_shape == (None, 14, 14, 64)
model.add(tf.keras.layers.BatchNormalization())
model.add(tf.keras.layers.LeakyReLU())

model.add(tf.keras.layers.Conv2DTranspose(1, (5, 5), strides=(2, 2), padding='same', use_bias=False, activation='tanh'))
assert model.output_shape == (None, 28, 28, 1)

return model
登入後複製

判別器網路的輸入是28x28的圖像。我們將透過使用tf.keras.Sequential函數來堆疊網路層。

def make_discriminator_model():

model = tf.keras.Sequential()
model.add(tf.keras.layers.Conv2D(64, (5, 5), strides=(2, 2), padding='same',
                                 input_shape=[28, 28, 1]))
model.add(tf.keras.layers.LeakyReLU())
model.add(tf.keras.layers.Dropout(0.3))

model.add(tf.keras.layers.Conv2D(128, (5, 5), strides=(2, 2), padding='same'))
model.add(tf.keras.layers.LeakyReLU())
model.add(tf.keras.layers.Dropout(0.3))

model.add(tf.keras.layers.Flatten())
model.add(tf.keras.layers.Dense(1))

return model
登入後複製

接下來,我們將寫訓練程式碼。我們將在每個批次中交替訓練生成器網路和判別器網路。在訓練過程中,我們將透過使用tf.GradientTape()函數來記錄梯度,然後使用tf.keras.optimizers.Adam()函數來優化網路。

generator = make_generator_model()
discriminator = make_discriminator_model()

損失函數

#cross_entropy = tf.keras.losses.BinaryCrossentropy(from_logits>

判別器損失函數

def discriminator_loss(real_output, fake_output):

real_loss = cross_entropy(tf.ones_like(real_output), real_output)
fake_loss = cross_entropy(tf.zeros_like(fake_output), fake_output)
total_loss = real_loss + fake_loss
return total_loss
登入後複製

生成器損失函數

def generator_loss(fake_output):

return cross_entropy(tf.ones_like(fake_output), fake_output)
登入後複製

優化器

generator_optimizer = tf.keras.optimizers.Adam(1e-4)

discriminator_optimizer = tf.keras.optimizers.Adam(1e-4)

# 定義訓練函數



#1函數
@tf.function

def train_step(images):

noise = tf.random.normal([BATCH_SIZE, 100])

with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape:
    generated_images = generator(noise, training=True)

    real_output = discriminator(images, training=True)
    fake_output = discriminator(generated_images, training=True)

    gen_loss = generator_loss(fake_output)
    disc_loss = discriminator_loss(real_output, fake_output)

gradients_of_generator = gen_tape.gradient(gen_loss, generator.trainable_variables)
gradients_of_discriminator = disc_tape.gradient(disc_loss, discriminator.trainable_variables)

generator_optimizer.apply_gradients(zip(gradients_of_generator, generator.trainable_variables))
discriminator_optimizer.apply_gradients(zip(gradients_of_discriminator, discriminator.trainable_variables))
登入後複製

BATCH_SIZE = 256

EPOCHS = 100

for epoch in range(EPOCHS):

for i in range(train_images.shape[0] // BATCH_SIZE):
    batch_images = train_images[i*BATCH_SIZE:(i+1)*BATCH_SIZE]
    train_step(batch_images)
登入後複製

產生新圖像

在訓練完成後,我們將使用生成器網路來產生新圖像。我們將隨機產生100個雜訊向量,並將它們輸入到生成器網路中,以產生新的手寫數位影像。

import matplotlib.pyplot as plt

###def generate_and_save_images(model, epoch, test_input):###
# 注意 training` 设定为 False
# 因此,所有层都在推理模式下运行(batchnorm)。
predictions = model(test_input, training=False)

fig = plt.figure(figsize=(4, 4))

for i in range(predictions.shape[0]):
    plt.subplot(4, 4, i+1)
    plt.imshow(predictions[i, :, :, 0] * 127.5 + 127.5, cmap='gray')
    plt.axis('off')

plt.savefig('image_at_epoch_{:04d}.png'.format(epoch))
plt.show()

登入後複製
###隨機產生雜訊向量######noise = tf.random###rrreee###隨機產生雜訊向量#####noise = tf.random .normal([16, 100])###generate_and_save_images(generator, 0, noise)######結果顯示生成器已經成功地產生了新的手寫數位影像。我們可以透過逐步提高訓練輪數來改善模型的性能。此外,我們還可以透過嘗試其他的超參數組合和網路架構來進一步改善GAN的效能。 ######總之,GAN演算法是一種非常有用的深度學習演算法,可以用來產生各種類型的資料。在本文中,我們使用Python編寫了一個用於生成手寫數位影像的GAN演算法實例,並展示如何訓練和使用生成器網路來產生新影像。 ###

以上是Python中的GAN演算法實例的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

PHP和Python:解釋了不同的範例 PHP和Python:解釋了不同的範例 Apr 18, 2025 am 12:26 AM

PHP主要是過程式編程,但也支持面向對象編程(OOP);Python支持多種範式,包括OOP、函數式和過程式編程。 PHP適合web開發,Python適用於多種應用,如數據分析和機器學習。

在PHP和Python之間進行選擇:指南 在PHP和Python之間進行選擇:指南 Apr 18, 2025 am 12:24 AM

PHP適合網頁開發和快速原型開發,Python適用於數據科學和機器學習。 1.PHP用於動態網頁開發,語法簡單,適合快速開發。 2.Python語法簡潔,適用於多領域,庫生態系統強大。

Python vs. JavaScript:學習曲線和易用性 Python vs. JavaScript:學習曲線和易用性 Apr 16, 2025 am 12:12 AM

Python更適合初學者,學習曲線平緩,語法簡潔;JavaScript適合前端開發,學習曲線較陡,語法靈活。 1.Python語法直觀,適用於數據科學和後端開發。 2.JavaScript靈活,廣泛用於前端和服務器端編程。

PHP和Python:深入了解他們的歷史 PHP和Python:深入了解他們的歷史 Apr 18, 2025 am 12:25 AM

PHP起源於1994年,由RasmusLerdorf開發,最初用於跟踪網站訪問者,逐漸演變為服務器端腳本語言,廣泛應用於網頁開發。 Python由GuidovanRossum於1980年代末開發,1991年首次發布,強調代碼可讀性和簡潔性,適用於科學計算、數據分析等領域。

vs code 可以在 Windows 8 中運行嗎 vs code 可以在 Windows 8 中運行嗎 Apr 15, 2025 pm 07:24 PM

VS Code可以在Windows 8上運行,但體驗可能不佳。首先確保系統已更新到最新補丁,然後下載與系統架構匹配的VS Code安裝包,按照提示安裝。安裝後,注意某些擴展程序可能與Windows 8不兼容,需要尋找替代擴展或在虛擬機中使用更新的Windows系統。安裝必要的擴展,檢查是否正常工作。儘管VS Code在Windows 8上可行,但建議升級到更新的Windows系統以獲得更好的開發體驗和安全保障。

visual studio code 可以用於 python 嗎 visual studio code 可以用於 python 嗎 Apr 15, 2025 pm 08:18 PM

VS Code 可用於編寫 Python,並提供許多功能,使其成為開發 Python 應用程序的理想工具。它允許用戶:安裝 Python 擴展,以獲得代碼補全、語法高亮和調試等功能。使用調試器逐步跟踪代碼,查找和修復錯誤。集成 Git,進行版本控制。使用代碼格式化工具,保持代碼一致性。使用 Linting 工具,提前發現潛在問題。

notepad 怎麼運行python notepad 怎麼運行python Apr 16, 2025 pm 07:33 PM

在 Notepad 中運行 Python 代碼需要安裝 Python 可執行文件和 NppExec 插件。安裝 Python 並為其添加 PATH 後,在 NppExec 插件中配置命令為“python”、參數為“{CURRENT_DIRECTORY}{FILE_NAME}”,即可在 Notepad 中通過快捷鍵“F6”運行 Python 代碼。

vscode 擴展是否是惡意的 vscode 擴展是否是惡意的 Apr 15, 2025 pm 07:57 PM

VS Code 擴展存在惡意風險,例如隱藏惡意代碼、利用漏洞、偽裝成合法擴展。識別惡意擴展的方法包括:檢查發布者、閱讀評論、檢查代碼、謹慎安裝。安全措施還包括:安全意識、良好習慣、定期更新和殺毒軟件。

See all articles