Python中的GAN演算法實例
生成對抗網路(GAN,Generative Adversarial Networks)是一種深度學習演算法,它透過兩個神經網路互相競爭的方式來產生新的資料。 GAN被廣泛用於圖像、音訊、文字等領域的生成任務。在本文中,我們將使用Python編寫一個GAN演算法實例,用於產生手寫數位影像。
- 資料集準備
我們將使用MNIST資料集作為我們的訓練資料集。 MNIST資料集包含60,000個訓練影像和10,000個測試影像,每個影像都是28x28的灰階影像。我們將使用TensorFlow庫來載入和處理資料集。在載入資料集之前,我們需要安裝TensorFlow庫和NumPy庫。
import tensorflow as tf
import numpy as np
(train_images, train_labels), (test_images, test_labels) = tf.keras.datasets.mnist.load_data()
資料集預處理
train_images = train_images.reshape(train_images.shape[0], 28, 28, 1).astype('float32')
train_images = (train_images - 127.5) / 127. # 將像素值歸一化到[-1, 1]的範圍內
- GAN架構設計與訓練
我們的GAN將包括兩個神經網路:一個生成器網路和一個判別器網路。生成器網路將接收雜訊向量作為輸入,並輸出一個28x28的影像。判別器網路將接收28x28的影像作為輸入,並輸出該影像是真實影像的機率。
生成器網路和判別器網路的架構都將採用卷積神經網路(CNN)。在生成器網路中,我們將使用反捲積層(Deconvolutional Layer)來將雜訊向量解碼為一個28x28的影像。在判別器網路中,我們將以卷積層(Convolutional Layer)來對輸入影像進行分類。
生成器網路的輸入是長度為100的雜訊向量。我們將透過使用tf.keras.Sequential函數來堆疊網路層。
def make_generator_model():
model = tf.keras.Sequential() model.add(tf.keras.layers.Dense(7*7*256, use_bias=False, input_shape=(100,))) model.add(tf.keras.layers.BatchNormalization()) model.add(tf.keras.layers.LeakyReLU()) model.add(tf.keras.layers.Reshape((7, 7, 256))) assert model.output_shape == (None, 7, 7, 256) # 注意:batch size没有限制 model.add(tf.keras.layers.Conv2DTranspose(128, (5, 5), strides=(1, 1), padding='same', use_bias=False)) assert model.output_shape == (None, 7, 7, 128) model.add(tf.keras.layers.BatchNormalization()) model.add(tf.keras.layers.LeakyReLU()) model.add(tf.keras.layers.Conv2DTranspose(64, (5, 5), strides=(2, 2), padding='same', use_bias=False)) assert model.output_shape == (None, 14, 14, 64) model.add(tf.keras.layers.BatchNormalization()) model.add(tf.keras.layers.LeakyReLU()) model.add(tf.keras.layers.Conv2DTranspose(1, (5, 5), strides=(2, 2), padding='same', use_bias=False, activation='tanh')) assert model.output_shape == (None, 28, 28, 1) return model
判別器網路的輸入是28x28的圖像。我們將透過使用tf.keras.Sequential函數來堆疊網路層。
def make_discriminator_model():
model = tf.keras.Sequential() model.add(tf.keras.layers.Conv2D(64, (5, 5), strides=(2, 2), padding='same', input_shape=[28, 28, 1])) model.add(tf.keras.layers.LeakyReLU()) model.add(tf.keras.layers.Dropout(0.3)) model.add(tf.keras.layers.Conv2D(128, (5, 5), strides=(2, 2), padding='same')) model.add(tf.keras.layers.LeakyReLU()) model.add(tf.keras.layers.Dropout(0.3)) model.add(tf.keras.layers.Flatten()) model.add(tf.keras.layers.Dense(1)) return model
接下來,我們將寫訓練程式碼。我們將在每個批次中交替訓練生成器網路和判別器網路。在訓練過程中,我們將透過使用tf.GradientTape()函數來記錄梯度,然後使用tf.keras.optimizers.Adam()函數來優化網路。
generator = make_generator_model()
discriminator = make_discriminator_model()
損失函數
#cross_entropy = tf.keras.losses.BinaryCrossentropy(from_logits>
判別器損失函數def discriminator_loss(real_output, fake_output):real_loss = cross_entropy(tf.ones_like(real_output), real_output) fake_loss = cross_entropy(tf.zeros_like(fake_output), fake_output) total_loss = real_loss + fake_loss return total_loss
return cross_entropy(tf.ones_like(fake_output), fake_output)
discriminator_optimizer = tf.keras.optimizers.Adam(1e-4)
def train_step(images):
noise = tf.random.normal([BATCH_SIZE, 100]) with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape: generated_images = generator(noise, training=True) real_output = discriminator(images, training=True) fake_output = discriminator(generated_images, training=True) gen_loss = generator_loss(fake_output) disc_loss = discriminator_loss(real_output, fake_output) gradients_of_generator = gen_tape.gradient(gen_loss, generator.trainable_variables) gradients_of_discriminator = disc_tape.gradient(disc_loss, discriminator.trainable_variables) generator_optimizer.apply_gradients(zip(gradients_of_generator, generator.trainable_variables)) discriminator_optimizer.apply_gradients(zip(gradients_of_discriminator, discriminator.trainable_variables))
BATCH_SIZE = 256
EPOCHS = 100for epoch in range(EPOCHS):for i in range(train_images.shape[0] // BATCH_SIZE):
batch_images = train_images[i*BATCH_SIZE:(i+1)*BATCH_SIZE]
train_step(batch_images)
登入後複製
for i in range(train_images.shape[0] // BATCH_SIZE): batch_images = train_images[i*BATCH_SIZE:(i+1)*BATCH_SIZE] train_step(batch_images)
產生新圖像
在訓練完成後,我們將使用生成器網路來產生新圖像。我們將隨機產生100個雜訊向量,並將它們輸入到生成器網路中,以產生新的手寫數位影像。
import matplotlib.pyplot as plt
###def generate_and_save_images(model, epoch, test_input):#### 注意 training` 设定为 False # 因此,所有层都在推理模式下运行(batchnorm)。 predictions = model(test_input, training=False) fig = plt.figure(figsize=(4, 4)) for i in range(predictions.shape[0]): plt.subplot(4, 4, i+1) plt.imshow(predictions[i, :, :, 0] * 127.5 + 127.5, cmap='gray') plt.axis('off') plt.savefig('image_at_epoch_{:04d}.png'.format(epoch)) plt.show()
以上是Python中的GAN演算法實例的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

PHP主要是過程式編程,但也支持面向對象編程(OOP);Python支持多種範式,包括OOP、函數式和過程式編程。 PHP適合web開發,Python適用於多種應用,如數據分析和機器學習。

PHP適合網頁開發和快速原型開發,Python適用於數據科學和機器學習。 1.PHP用於動態網頁開發,語法簡單,適合快速開發。 2.Python語法簡潔,適用於多領域,庫生態系統強大。

Python更適合初學者,學習曲線平緩,語法簡潔;JavaScript適合前端開發,學習曲線較陡,語法靈活。 1.Python語法直觀,適用於數據科學和後端開發。 2.JavaScript靈活,廣泛用於前端和服務器端編程。

PHP起源於1994年,由RasmusLerdorf開發,最初用於跟踪網站訪問者,逐漸演變為服務器端腳本語言,廣泛應用於網頁開發。 Python由GuidovanRossum於1980年代末開發,1991年首次發布,強調代碼可讀性和簡潔性,適用於科學計算、數據分析等領域。

VS Code可以在Windows 8上運行,但體驗可能不佳。首先確保系統已更新到最新補丁,然後下載與系統架構匹配的VS Code安裝包,按照提示安裝。安裝後,注意某些擴展程序可能與Windows 8不兼容,需要尋找替代擴展或在虛擬機中使用更新的Windows系統。安裝必要的擴展,檢查是否正常工作。儘管VS Code在Windows 8上可行,但建議升級到更新的Windows系統以獲得更好的開發體驗和安全保障。

VS Code 可用於編寫 Python,並提供許多功能,使其成為開發 Python 應用程序的理想工具。它允許用戶:安裝 Python 擴展,以獲得代碼補全、語法高亮和調試等功能。使用調試器逐步跟踪代碼,查找和修復錯誤。集成 Git,進行版本控制。使用代碼格式化工具,保持代碼一致性。使用 Linting 工具,提前發現潛在問題。

在 Notepad 中運行 Python 代碼需要安裝 Python 可執行文件和 NppExec 插件。安裝 Python 並為其添加 PATH 後,在 NppExec 插件中配置命令為“python”、參數為“{CURRENT_DIRECTORY}{FILE_NAME}”,即可在 Notepad 中通過快捷鍵“F6”運行 Python 代碼。

VS Code 擴展存在惡意風險,例如隱藏惡意代碼、利用漏洞、偽裝成合法擴展。識別惡意擴展的方法包括:檢查發布者、閱讀評論、檢查代碼、謹慎安裝。安全措施還包括:安全意識、良好習慣、定期更新和殺毒軟件。
