首頁 後端開發 Python教學 Python中的隨機森林演算法實例

Python中的隨機森林演算法實例

Jun 10, 2023 pm 01:12 PM
python 演算法 隨機森林

隨機森林(Random Forest)是一種整合學習(Ensemble Learning)演算法,其透過結合多個決策樹的預測結果來提高準確性和穩健性。隨機森林在各領域都有廣泛的應用,例如金融、醫療、電商等。

本文將介紹如何使用Python實現隨機森林分類器,並使用鳶尾花資料集進行測試。

一、鳶尾花資料集

鳶尾花資料集是機器學習中一個經典的資料集,包含了150筆記錄,每筆記錄有4個特徵和1個類別標籤。其中4個特徵分別是花萼長度、花萼寬度、花瓣長度和花瓣寬度,類別標籤則表示鳶尾花的三個品種之一(山鳶尾、變色鳶尾、維吉尼亞鳶尾花)。

在Python中,我們可以使用scikit-learn這個強大的機器學習函式庫來載入鳶尾花資料集。具體操作如下:

from sklearn.datasets import load_iris

iris = load_iris()
X = iris.data
y = iris.target
登入後複製

二、建立隨機森林分類器

使用scikit-learn建立隨機森林分類器非常簡單。首先,我們需要從sklearn.ensemble中導入RandomForestClassifier類,並實例化一個物件:

from sklearn.ensemble import RandomForestClassifier

rfc = RandomForestClassifier(n_estimators=10)
登入後複製

其中,n_estimators參數指定了隨機森林中包含的決策樹數量。此處,我們將隨機森林中的決策樹數量設定為10。

接著,我們需要將鳶尾花資料集分成訓練資料和測試資料。使用train_test_split函數將資料集隨機劃分為訓練集和測試集:

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
登入後複製

其中,test_size參數指定了測試集所佔比例,random_state參數指定了偽隨機數產生器的種子,以確保每次運行程序得到相同的結果。

然後,我們可以使用訓練資料來訓練隨機森林分類器:

rfc.fit(X_train, y_train)
登入後複製

三、測試隨機森林分類器

一旦分類器已經訓練完畢,我們可以使用測試數據來測試其性能。使用predict函數對測試集進行預測,並使用accuracy_score函數計算模型的準確率:

from sklearn.metrics import accuracy_score

y_pred = rfc.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
print("Accuracy:", accuracy)
登入後複製

最後,我們可以使用matplotlib庫將分類器的決策邊界可視化,以便更好地理解分類器的行為:

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
z_min, z_max = X[:, 2].min() - .5, X[:, 2].max() + .5
xx, yy, zz = np.meshgrid(np.arange(x_min, x_max, 0.2), np.arange(y_min, y_max, 0.2), np.arange(z_min, z_max, 0.2))

fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')

Z = rfc.predict(np.c_[xx.ravel(), yy.ravel(), zz.ravel()])
Z = Z.reshape(xx.shape)
ax.scatter(X[:, 0], X[:, 1], X[:, 2], c=y)
ax.set_xlabel('Sepal length')
ax.set_ylabel('Sepal width')
ax.set_zlabel('Petal length')
ax.set_title('Decision Boundary')

ax.view_init(elev=30, azim=120)
ax.plot_surface(xx, yy, zz, alpha=0.3, facecolors='blue')

plt.show()
登入後複製

上述程式碼將得到一個三維圖像,其中資料點的顏色表示鳶尾花的品種,決策邊界則用半透明的藍色面來表示。

四、總結

本文介紹如何使用Python實作隨機森林分類器,並使用鳶尾花資料集進行測試。由於隨機森林演算法的穩健性和準確性,它在實際應用中有廣泛的應用前景。如果您對該演算法感興趣,建議多實踐並閱讀相關的文獻。

以上是Python中的隨機森林演算法實例的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

AI Hentai Generator

AI Hentai Generator

免費產生 AI 無盡。

熱門文章

R.E.P.O.能量晶體解釋及其做什麼(黃色晶體)
1 個月前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳圖形設置
1 個月前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您聽不到任何人,如何修復音頻
1 個月前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.聊天命令以及如何使用它們
1 個月前 By 尊渡假赌尊渡假赌尊渡假赌

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

PHP和Python:代碼示例和比較 PHP和Python:代碼示例和比較 Apr 15, 2025 am 12:07 AM

PHP和Python各有優劣,選擇取決於項目需求和個人偏好。 1.PHP適合快速開發和維護大型Web應用。 2.Python在數據科學和機器學習領域佔據主導地位。

CentOS上如何進行PyTorch模型訓練 CentOS上如何進行PyTorch模型訓練 Apr 14, 2025 pm 03:03 PM

在CentOS系統上高效訓練PyTorch模型,需要分步驟進行,本文將提供詳細指南。一、環境準備:Python及依賴項安裝:CentOS系統通常預裝Python,但版本可能較舊。建議使用yum或dnf安裝Python3併升級pip:sudoyumupdatepython3(或sudodnfupdatepython3),pip3install--upgradepip。 CUDA與cuDNN(GPU加速):如果使用NVIDIAGPU,需安裝CUDATool

docker原理詳解 docker原理詳解 Apr 14, 2025 pm 11:57 PM

Docker利用Linux內核特性,提供高效、隔離的應用運行環境。其工作原理如下:1. 鏡像作為只讀模板,包含運行應用所需的一切;2. 聯合文件系統(UnionFS)層疊多個文件系統,只存儲差異部分,節省空間並加快速度;3. 守護進程管理鏡像和容器,客戶端用於交互;4. Namespaces和cgroups實現容器隔離和資源限制;5. 多種網絡模式支持容器互聯。理解這些核心概念,才能更好地利用Docker。

CentOS上PyTorch的GPU支持情況如何 CentOS上PyTorch的GPU支持情況如何 Apr 14, 2025 pm 06:48 PM

在CentOS系統上啟用PyTorchGPU加速,需要安裝CUDA、cuDNN以及PyTorch的GPU版本。以下步驟將引導您完成這一過程:CUDA和cuDNN安裝確定CUDA版本兼容性:使用nvidia-smi命令查看您的NVIDIA顯卡支持的CUDA版本。例如,您的MX450顯卡可能支持CUDA11.1或更高版本。下載並安裝CUDAToolkit:訪問NVIDIACUDAToolkit官網,根據您顯卡支持的最高CUDA版本下載並安裝相應的版本。安裝cuDNN庫:前

Python vs. JavaScript:社區,圖書館和資源 Python vs. JavaScript:社區,圖書館和資源 Apr 15, 2025 am 12:16 AM

Python和JavaScript在社區、庫和資源方面的對比各有優劣。 1)Python社區友好,適合初學者,但前端開發資源不如JavaScript豐富。 2)Python在數據科學和機器學習庫方面強大,JavaScript則在前端開發庫和框架上更勝一籌。 3)兩者的學習資源都豐富,但Python適合從官方文檔開始,JavaScript則以MDNWebDocs為佳。選擇應基於項目需求和個人興趣。

CentOS下PyTorch版本怎麼選 CentOS下PyTorch版本怎麼選 Apr 14, 2025 pm 02:51 PM

在CentOS下選擇PyTorch版本時,需要考慮以下幾個關鍵因素:1.CUDA版本兼容性GPU支持:如果你有NVIDIAGPU並且希望利用GPU加速,需要選擇支持相應CUDA版本的PyTorch。可以通過運行nvidia-smi命令查看你的顯卡支持的CUDA版本。 CPU版本:如果沒有GPU或不想使用GPU,可以選擇CPU版本的PyTorch。 2.Python版本PyTorch

minio安裝centos兼容性 minio安裝centos兼容性 Apr 14, 2025 pm 05:45 PM

MinIO對象存儲:CentOS系統下的高性能部署MinIO是一款基於Go語言開發的高性能、分佈式對象存儲系統,與AmazonS3兼容。它支持多種客戶端語言,包括Java、Python、JavaScript和Go。本文將簡要介紹MinIO在CentOS系統上的安裝和兼容性。 CentOS版本兼容性MinIO已在多個CentOS版本上得到驗證,包括但不限於:CentOS7.9:提供完整的安裝指南,涵蓋集群配置、環境準備、配置文件設置、磁盤分區以及MinI

CentOS上PyTorch的分佈式訓練如何操作 CentOS上PyTorch的分佈式訓練如何操作 Apr 14, 2025 pm 06:36 PM

在CentOS系統上進行PyTorch分佈式訓練,需要按照以下步驟操作:PyTorch安裝:前提是CentOS系統已安裝Python和pip。根據您的CUDA版本,從PyTorch官網獲取合適的安裝命令。對於僅需CPU的訓練,可以使用以下命令:pipinstalltorchtorchvisiontorchaudio如需GPU支持,請確保已安裝對應版本的CUDA和cuDNN,並使用相應的PyTorch版本進行安裝。分佈式環境配置:分佈式訓練通常需要多台機器或單機多GPU。所

See all articles