K-means演算法是一種常見的無監督學習演算法,用於將資料聚類成不同的類別。 K-means 演算法是K-means演算法的改進版本,旨在提高初始聚類中心選擇的效率和準確性。本文將詳細介紹Python中的K-means 演算法的原理、程式碼實作和應用。
K-means演算法是迭代演算法,每次迭代的過程為:首先隨機選取K個初始聚類中心,然後將每個資料點分配到離其最近的初始聚類中心所在的類別中,接著重新計算所有聚類的中心,並更新聚類中心。重複上述過程直至滿足收斂條件。
K-means的演算法流程:
K-means 演算法是K-means演算法的改進版本,主要在初始聚類中心的選擇上做了最佳化。 K-means 演算法的初始聚類中心選擇步驟如下:
下面,我們將透過Python實作K-means 演算法。
首先,導入必要的函式庫:
import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import make_blobs from sklearn.cluster import KMeans
接著,我們產生一組用於聚類的資料:
n_samples = 1500 random_state = 170 X, y = make_blobs(n_samples=n_samples, random_state=random_state)
然後,我們透過sklearn的KMeans模組來訓練K-means 模型:
kmeans = KMeans(init="k-means++", n_clusters=3, n_init=10) kmeans.fit(X)
最後,我們將聚類結果視覺化:
plt.figure(figsize=(12, 12)) h = 0.02 x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) Z = kmeans.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) plt.imshow(Z, interpolation="nearest", extent=(xx.min(), xx.max(), yy.min(), yy.max()), cmap=plt.cm.Pastel1, aspect="auto", origin="lower") plt.scatter(X[:, 0], X[:, 1], s=30, c=kmeans.labels_, cmap=plt.cm.Paired) plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], marker="^", s=100, linewidths=3, color='black', zorder=10) plt.title("K-means++ clustering") plt.xlim(x_min, x_max) plt.ylim(y_min, y_max) plt.show()
K-means演算法適用於沒有標籤資訊的資料聚類問題。 K-means 演算法相較於K-means演算法,為確保初始聚類中心的合理性和獨特性,更適用於資料較多或資料分佈較分散的情況下。
K-means 演算法可以用於資料探勘、影像處理、自然語言處理等領域。可以利用聚類演算法找出相似性較高的樣本,對於大數據的視覺化也有很好的應用。
總之,K-means 演算法在資料探勘、聚類分析、影像辨識、自然語言處理等領域都有很好的應用前景。
以上是Python中的K-means++演算法詳解的詳細內容。更多資訊請關注PHP中文網其他相關文章!