通用医疗人工智能(Generalist Medical AI, GMAI)模型有可能通过提供先进的医疗诊断、决策支持和患者护理功能来彻底改变医疗保健。
近年来,人工智能 (AI) 领域取得了显著地进步,基础模型处于这场革命的最前沿。根据发表在《自然》杂志上的一项新研究,这些被称为 GMAI(通用医疗人工智能)的强大 AI 模型有可能通过在医疗诊断、决策支持和患者护理方面提供前所未有的能力来重塑医疗保健。
在本文中,我们深入探讨了一项开创性的研究(参见:https://www.nature.com/articles/s41586-023-05881-4),该研究概述了 GMAI 模型的变革潜力及其带来的挑战,主要面向渴望探索人工智能与医疗保健交叉领域的专业人士。
基础模型是最新一代的 AI 模型,已经过大量不同数据集的训练,使它们能够在广泛的任务中表现出色。这些模型与它们的前辈有很大的不同,后者是为一次一个特定任务而设计的。凭借其多功能性和最先进的性能,基础模型可以回答问题、描述图像、玩视频游戏等等。GMAI 的出现将这种多功能性提升到了新的高度,有望解决复杂的医疗任务并改变医疗保健领域。
虽然医疗人工智能在特定的面向任务的模型方面取得了长足进步,但它还没有接受基础模型的力量。传统的医学人工智能模型仅限于预定义的任务,需要大量的注释工作并且缺乏对新任务或数据分布的适应性。另一方面,GMAI 模型摆脱了这些限制,并提供了三个关键功能,使它们有别于传统的医学 AI 模型。
GMAI 模型使用户能够对其输出进行细粒度控制,使复杂的医疗信息更易于访问和理解。用户可以自定义输出格式、改写响应,甚至可以调整特定领域的详细信息级别。GMAI 模型可以适应区域实践并与不同的用户进行有效沟通,超越语言障碍并适应个人喜好。
GMAI 模型的显着特征之一是它们无需大量再训练即可即时学习新任务的能力。这种情境学习使 GMAI 能够跟上新出现的疾病、不断变化的技术和不断发展的数据分布。通过简单地提供一些示例或提示,GMAI 模型可以快速适应新场景,使其具有很强的适应性和面向未来的能力。
GMAI 模型将医学知识的正式表示形式带到桌面上,从而实现高级医学推理和精确的临床解释。通过利用知识图谱、基于检索的方法和现有的医学数据库,GMAI 模型可以通过复杂的医学概念和关系进行推理。他们可以生成不言自明的警告,起草全面的放射学报告,在床边提供详细的决策支持,甚至生成具有所需特性的蛋白质序列。
该研究强调了几个令人兴奋的用例,在这些用例中,通用医疗 AI 模型可以对医疗保健产生深远影响:
雖然通用醫學 AI 模型前景廣闊,但它們也提出了必須解決的獨特挑戰,以確保它們在臨床環境中的安全有效部署。
Generalist Medical AI 模型有可能透過提供先進的醫療診斷、決策支援和病患照護功能來徹底改變醫療保健。它們的靈活性、適應性和醫學領域知識的整合為各種臨床應用開啟了新的可能性。然而,必須認真解決與確認、驗證、偏見、隱私和可擴展性相關的挑戰,以確保 GMAI 模型的安全和道德部署。
隨著 AI 社群和臨床利害關係人繼續探索 GMAI 的潛力,促進合作、建立監管框架並優先考慮以患者為中心的護理至關重要。透過負責任的開發和廣泛採用,GMAI 模型可以減輕負擔。
以上是通用醫療人工智慧如何革新醫療產業?的詳細內容。更多資訊請關注PHP中文網其他相關文章!