目錄
方法概述
實驗及結果
首頁 科技週邊 人工智慧 大語言模型的視覺天賦:GPT也能透過情境學習解決視覺任務

大語言模型的視覺天賦:GPT也能透過情境學習解決視覺任務

Jul 14, 2023 pm 03:37 PM
機器學習 能力

目前,大型語言模型(LLM)已經掀起自然語言處理(NLP)領域的變革浪潮。我們看到 LLM 具備強大的湧現能力,在複雜的語言理解任務、生成任務甚至推理任務上都表現優異。這啟發人們進一步探索 LLM 在機器學習另一子領域 —— 電腦視覺(CV)的潛力。

LLM 的一項卓越才能是它們具備上下文學習的能力。情境學習不會更新 LLM 的任何參數,卻在各種 NLP 任務中卻展現了令人驚豔的成果。那麼,GPT 能否透過情境學習解決視覺任務呢?

最近,來自Google和卡內基美隆大學(CMU)的研究者共同發表的一篇論文表明:只要我們能夠將圖像(或其他非語言模態)轉化為LLM 能夠理解的語言,這似乎是可行的。

大語言模型的視覺天賦:GPT也能透過情境學習解決視覺任務圖片

論文網址:https://arxiv.org/abs/2306.17842

#這篇論文揭示了PaLM 或GPT 在透過情境學習解決視覺任務方面的能力,並提出了新方法SPAE(Semantic Pyramid AutoEncoder)。這種新方法使得 LLM 能夠執行影像生成任務,而無需進行任何參數更新。這也是使用上下文學習使得 LLM 生成圖像內容的首個成功方法。

我們先來看看透過上下文學習,LLM 在生成圖像內容的實驗效果。

例如,在給定上下文中,透過提供50 張手寫圖像,論文要求PaLM 2 回答需要產生數位影像作為輸出的複雜查詢:

大語言模型的視覺天賦:GPT也能透過情境學習解決視覺任務圖片

還能在有圖像上下文輸入的情況下產生逼真的現實圖像:

大語言模型的視覺天賦:GPT也能透過情境學習解決視覺任務圖片

除了產生圖像,透過上下文學習,PaLM 2 還能進行圖像描述:

大語言模型的視覺天賦:GPT也能透過情境學習解決視覺任務

還有與圖像相關問題的視覺問答:

大語言模型的視覺天賦:GPT也能透過情境學習解決視覺任務圖片

甚至可以去雜訊生成影片:

大語言模型的視覺天賦:GPT也能透過情境學習解決視覺任務圖片

方法概述

實際上,將圖像轉換為LLM 能夠理解的語言,是在視覺Transformer(ViT)論文中就已經研究過的問題。在 Google 和 CMU 的這篇論文中,他們將其提升到了一個新的層次 —— 使用實際的單字來表示圖像。

這種方法就像建造一個充滿文字的塔樓,捕捉圖像的語義和細節。這種充滿文字的表示方法讓影像描述可以輕鬆生成,並讓 LLM 可以回答與影像相關的問題,甚至可以重構影像像素。

大語言模型的視覺天賦:GPT也能透過情境學習解決視覺任務

具體來說,研究提出使用經過訓練的編碼器和CLIP 模型將影像轉換為一個token 空間;然後利用LLM 產生合適的詞法token;最後使用訓練有素的解碼器將這些token 轉換回像素空間。這個巧妙的過程將圖像轉換為 LLM 可以理解的語言,使我們能夠利用 LLM 在視覺任務中的生成能力。

大語言模型的視覺天賦:GPT也能透過情境學習解決視覺任務

#

實驗及結果

該研究將 SPAE 與 SOTA 方法 Frozen 和 LQAE 進行了實驗比較,結果如下表 1 所示。 SPAEGPT 在所有任務上表現均優於 LQAE,且僅使用 2% 的 token。

大語言模型的視覺天賦:GPT也能透過情境學習解決視覺任務圖片

總的來說,在mini-ImageNet 基準上的測試表明,SPAE 方法相比之前的SOTA方法提升了25% 的性能。

大語言模型的視覺天賦:GPT也能透過情境學習解決視覺任務圖片

為了驗證SPAE 設計方法的有效性,研究進行了消融實驗,實驗結果如下表4 和圖10 所示:

大語言模型的視覺天賦:GPT也能透過情境學習解決視覺任務圖片

大語言模型的視覺天賦:GPT也能透過情境學習解決視覺任務

#感有興趣的讀者可以閱讀論文原文,了解更多研究內容。

以上是大語言模型的視覺天賦:GPT也能透過情境學習解決視覺任務的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

15個值得推薦的開源免費圖片標註工具 15個值得推薦的開源免費圖片標註工具 Mar 28, 2024 pm 01:21 PM

圖像標註是將標籤或描述性資訊與圖像相關聯的過程,以賦予圖像內容更深層的含義和解釋。這個過程對於機器學習至關重要,它有助於訓練視覺模型以更準確地識別圖像中的各個元素。透過為圖像添加標註,使得電腦能夠理解圖像背後的語義和上下文,從而提高對圖像內容的理解和分析能力。影像標註的應用範圍廣泛,涵蓋了許多領域,如電腦視覺、自然語言處理和圖視覺模型具有廣泛的應用領域,例如,輔助車輛識別道路上的障礙物,幫助疾病的檢測和診斷透過醫學影像識別。本文主要推薦一些較好的開源免費的圖片標註工具。 1.Makesens

一文帶您了解SHAP:機器學習的模型解釋 一文帶您了解SHAP:機器學習的模型解釋 Jun 01, 2024 am 10:58 AM

在機器學習和資料科學領域,模型的可解釋性一直是研究者和實踐者關注的焦點。隨著深度學習和整合方法等複雜模型的廣泛應用,理解模型的決策過程變得尤為重要。可解釋人工智慧(ExplainableAI|XAI)透過提高模型的透明度,幫助建立對機器學習模型的信任和信心。提高模型的透明度可以透過多種複雜模型的廣泛應用等方法來實現,以及用於解釋模型的決策過程。這些方法包括特徵重要性分析、模型預測區間估計、局部可解釋性演算法等。特徵重要性分析可以透過評估模型對輸入特徵的影響程度來解釋模型的決策過程。模型預測區間估計

透過學習曲線辨識過擬合和欠擬合 透過學習曲線辨識過擬合和欠擬合 Apr 29, 2024 pm 06:50 PM

本文將介紹如何透過學習曲線來有效辨識機器學習模型中的過度擬合和欠擬合。欠擬合和過擬合1、過擬合如果一個模型對資料進行了過度訓練,以至於它從中學習了噪聲,那麼這個模型就被稱為過擬合。過度擬合模型非常完美地學習了每一個例子,所以它會錯誤地分類一個看不見的/新的例子。對於一個過度擬合的模型,我們會得到一個完美/接近完美的訓練集分數和一個糟糕的驗證集/測試分數。略有修改:"過擬合的原因:用一個複雜的模型來解決一個簡單的問題,從資料中提取雜訊。因為小資料集作為訓練集可能無法代表所有資料的正確表示。"2、欠擬合如

人工智慧在太空探索和人居工程中的演變 人工智慧在太空探索和人居工程中的演變 Apr 29, 2024 pm 03:25 PM

1950年代,人工智慧(AI)誕生。當時研究人員發現機器可以執行類似人類的任務,例如思考。後來,在1960年代,美國國防部資助了人工智慧,並建立了實驗室進行進一步開發。研究人員發現人工智慧在許多領域都有用武之地,例如太空探索和極端環境中的生存。太空探索是對宇宙的研究,宇宙涵蓋了地球以外的整個宇宙空間。太空被歸類為極端環境,因為它的條件與地球不同。要在太空中生存,必須考慮許多因素,並採取預防措施。科學家和研究人員認為,探索太空並了解一切事物的現狀有助於理解宇宙的運作方式,並為潛在的環境危機

通透!機器學習各大模型原理的深度剖析! 通透!機器學習各大模型原理的深度剖析! Apr 12, 2024 pm 05:55 PM

通俗來說,機器學習模型是一種數學函數,它能夠將輸入資料映射到預測輸出。更具體地說,機器學習模型是一種透過學習訓練數據,來調整模型參數,以最小化預測輸出與真實標籤之間的誤差的數學函數。在機器學習中存在多種模型,例如邏輯迴歸模型、決策樹模型、支援向量機模型等,每種模型都有其適用的資料類型和問題類型。同時,不同模型之間存在著許多共通性,或者說有一條隱藏的模型演化的路徑。將聯結主義的感知機為例,透過增加感知機的隱藏層數量,我們可以將其轉化為深度神經網路。而對感知機加入核函數的話就可以轉換為SVM。這一

使用C++實現機器學習演算法:常見挑戰及解決方案 使用C++實現機器學習演算法:常見挑戰及解決方案 Jun 03, 2024 pm 01:25 PM

C++中機器學習演算法面臨的常見挑戰包括記憶體管理、多執行緒、效能最佳化和可維護性。解決方案包括使用智慧指標、現代線程庫、SIMD指令和第三方庫,並遵循程式碼風格指南和使用自動化工具。實作案例展示如何利用Eigen函式庫實現線性迴歸演算法,有效地管理記憶體和使用高效能矩陣操作。

你所不知道的機器學習五大學派 你所不知道的機器學習五大學派 Jun 05, 2024 pm 08:51 PM

機器學習是人工智慧的重要分支,它賦予電腦從數據中學習的能力,並能夠在無需明確編程的情況下改進自身能力。機器學習在各個領域都有廣泛的應用,從影像辨識和自然語言處理到推薦系統和詐欺偵測,它正在改變我們的生活方式。機器學習領域存在著多種不同的方法和理論,其中最具影響力的五種方法被稱為「機器學習五大派」。這五大派分別為符號派、聯結派、進化派、貝葉斯派和類推學派。 1.符號學派符號學(Symbolism),又稱符號主義,強調利用符號進行邏輯推理和表達知識。該學派認為學習是一種逆向演繹的過程,透過現有的

Flash Attention穩定嗎? Meta、哈佛發現其模型權重偏差呈現數量級波動 Flash Attention穩定嗎? Meta、哈佛發現其模型權重偏差呈現數量級波動 May 30, 2024 pm 01:24 PM

MetaFAIR聯合哈佛優化大規模機器學習時所產生的資料偏差,提供了新的研究架構。據所周知,大語言模型的訓練常常需要數月的時間,使用數百甚至上千個GPU。以LLaMA270B模型為例,其訓練總共需要1,720,320個GPU小時。由於這些工作負載的規模和複雜性,導致訓練大模型存在著獨特的系統性挑戰。最近,許多機構在訓練SOTA生成式AI模型時報告了訓練過程中的不穩定情況,它們通常以損失尖峰的形式出現,例如Google的PaLM模型訓練過程中出現了多達20次的損失尖峰。數值偏差是造成這種訓練不準確性的根因,

See all articles