GPT-4使用混合大模型?研究證明MoE+指令調優確實讓大模型效能超群
自 GPT-4 問世以來,人們一直驚艷於它強大的湧現能力,包括出色的語言理解能力、生成能力、邏輯推理能力等等。這些能力讓 GPT-4 成為機器學習領域最前衛的模型之一。然而,OpenAI 至今未公開 GPT-4 的任何技術細節。
上個月,喬治・霍茲(George Hotz)在接受名為Latent Space 的AI 技術播客的採訪時提到了GPT-4,並稱GPT-4 其實是一個混合模型。具體來說,喬治・霍茲稱GPT-4 採用由8 個專家模型組成的整合系統,每個專家模型都有2,200 億個參數(比GPT-3 的1750 億參數量略多一些),而這些模型經過了針對不同數據和任務分佈的訓練。
Latent Space 的訪談內容。
這或許只是喬治・霍茲的一種推測,但這種模式確實有一定的合理性。最近,由來自Google、UC 柏克萊、MIT 等機構的研究者共同發表的一篇論文證實:混合專家模型(MoE)與指令調優的結合能夠讓大型語言模型(LLM)的表現大幅提升。
圖片
論文網址:https://arxiv.org/pdf/2305.14705.pdf
#稀疏混合專家模型是一種特殊的神經網路架構,可以在不增加推理成本的情況下,為大型語言模型(LLM)增加可學習的參數。指令調優(instruction tuning)是一種訓練 LLM 遵循指令的技術。研究發現 MoE 模型比密集模型更能從指令調優中獲益,因此提出將 MoE 和指令調優結合。
研究在三種實驗設定下進行了實證研究,包括
- 在沒有指令調優的情況下在單一下游任務進行直接微調;
- 指令調優後對下游任務進行in-context 少樣本或零樣本泛化;
指令調優後對單一下游任務進行進一步微調。
在第一種情況下,MoE 模型整體上不如具有相同運算能力的密集模型。然而,隨著指令調優的引入(第二和第三種情況),FLAN-MoE_32B(Fine-tuned LAnguage Net,簡寫為Flan,是一種經過指令調優的模型,Flan-MoE 即為指令調優MoE)在四個基準任務上效能超過了FLAN-PALM_62B,卻只用了三分之一的FLOPs。
如下圖所示,在使用指令調優前,MoE→FT 不如 T5→FT。指令調優後,Flan-MoE→FT 優於 Flan-T5→FT。 MoE 從指令調優中獲得的收益( 15.6) 大於密集模型( 10.2):
圖片
看來GPT -4 採用混合模型還是有點根據的,MoE 確實能夠從指令調優中獲得更大的收益:
圖片
方法概述
研究者在FLAN-MOE (是一組經過指令微調的稀疏混合專家模型)模型中使用了稀疏激活MoE(Mixture-of-Experts)。此外,他們還用 MoE 層取代了其他 Transformer 層的前饋組件。
由於 FLAN-MoE 是經過指令調優的模型,因而指令調優非常重要,該研究在 FLAN 集合資料集的基礎上對 FLAN-MOE 進行微調。此外,研究將每個 FLAN-MOE 的輸入序列長度調整為 2048,輸出長度調整為 512。
實驗與分析
平均而言,在不增加任何額外計算的情況下,Flan-MoE 在所有模型尺度上都優於密集的同類產品(Flan-T5)。
圖片
專家數。圖 4 顯示,隨著專家數量的增加,初始時,模型受益於更豐富的專門子網絡,每個子網絡能夠處理問題空間中的不同任務或方面。這種方式使得 MoE 在處理複雜任務時具有很強的適應性和效率,從而整體上改善性能。然而,隨著專家數量的不斷增加,模型效能增益開始減少,最終達到飽和點。
圖片
圖3 和表1 詳細研究了不同的路由決策如何影響指令調優效能:透過FLAN- Switch 和FLAN-GS 策略之間的比較可以得出,啟動更多的專家會在四個基準測試中提高效能。在這些基準測試中,MMLU-Direct 模型顯示出最顯著的改進,對於 BASE/LARGE 尺寸的模型,從 38.0% 增加到 39.9%。
值得注意的是,與等效容量的密集模型相比,指令調優顯著放大了MoE 模型在保留MMLU、BBH 和內部QA 和推理基準測試方面的性能。對於較大的 MoE 模型,這些優勢進一步放大。例如,指令調優使 ST_32B 的效能提升了 45.2%,而對於 FLAN-PALM_62B,這種改進相對較小,約為 6.6%。
當模型擴展時,Flan-MoE (Flan-ST-32B) 優於 Flan-PaLM-62B 。
圖片
此外,研究透過freeze 給定模型的閘控函數(gating function)、專家模組和MoE參數進行了一些分析實驗。如下表 2 所示,實驗結果表明,freeze 專家模組或 MoE 組件對模型性能有負面影響。
相反,freeze 閘控函數會使模型效能略有改善,儘管並不明顯。研究者推測這項觀察結果與 FLAN-MOE 的欠擬合有關。該研究也進行了消融實驗來探究下圖 5 描述了微調資料效率消融研究。
最後,為了比較直接對MoE 進行微調和FLAN-MOE 之間的差距,該研究對單任務微調的MoE、單任務微調的FLAN-MoE 和密集模型進行了實驗,結果如下圖6 所示:
#有興趣的讀者可以閱讀論文原文,了解更多研究內容。
以上是GPT-4使用混合大模型?研究證明MoE+指令調優確實讓大模型效能超群的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

想像一下,一個人工智慧模型,不僅擁有超越傳統運算的能力,還能以更低的成本實現更有效率的效能。這不是科幻,DeepSeek-V2[1],全球最強開源MoE模型來了。 DeepSeek-V2是一個強大的專家混合(MoE)語言模型,具有訓練經濟、推理高效的特點。它由236B個參數組成,其中21B個參數用於啟動每個標記。與DeepSeek67B相比,DeepSeek-V2效能更強,同時節省了42.5%的訓練成本,減少了93.3%的KV緩存,最大生成吞吐量提高到5.76倍。 DeepSeek是一家探索通用人工智

AI,的確正在改變數學。最近,一直十分關注這個議題的陶哲軒,轉發了最近一期的《美國數學學會通報》(BulletinoftheAmericanMathematicalSociety)。圍繞著「機器會改變數學嗎?」這個話題,許多數學家發表了自己的觀點,全程火花四射,內容硬核,精彩紛呈。作者陣容強大,包括菲爾茲獎得主AkshayVenkatesh、華裔數學家鄭樂雋、紐大電腦科學家ErnestDavis等多位業界知名學者。 AI的世界已經發生了天翻地覆的變化,要知道,其中許多文章是在一年前提交的,而在這一

谷歌力推的JAX在最近的基準測試中表現已經超過Pytorch和TensorFlow,7項指標排名第一。而且測試並不是JAX性能表現最好的TPU上完成的。雖然現在在開發者中,Pytorch依然比Tensorflow更受歡迎。但未來,也許有更多的大型模型會基於JAX平台進行訓練和運行。模型最近,Keras團隊為三個後端(TensorFlow、JAX、PyTorch)與原生PyTorch實作以及搭配TensorFlow的Keras2進行了基準測試。首先,他們為生成式和非生成式人工智慧任務選擇了一組主流

波士頓動力Atlas,正式進入電動機器人時代!昨天,液壓Atlas剛「含淚」退出歷史舞台,今天波士頓動力就宣布:電動Atlas上崗。看來,在商用人形機器人領域,波士頓動力是下定決心要跟特斯拉硬剛一把了。新影片放出後,短短十幾小時內,就已經有一百多萬觀看。舊人離去,新角色登場,這是歷史的必然。毫無疑問,今年是人形機器人的爆發年。網友銳評:機器人的進步,讓今年看起來像人類的開幕式動作、自由度遠超人類,但這真不是恐怖片?影片一開始,Atlas平靜地躺在地上,看起來應該是仰面朝天。接下來,讓人驚掉下巴

本月初,來自MIT等機構的研究者提出了一種非常有潛力的MLP替代方法—KAN。 KAN在準確性和可解釋性方面表現優於MLP。而且它能以非常少的參數量勝過以更大參數量運行的MLP。例如,作者表示,他們用KAN以更小的網路和更高的自動化程度重現了DeepMind的結果。具體來說,DeepMind的MLP有大約300,000個參數,而KAN只有約200個參數。 KAN與MLP一樣具有強大的數學基礎,MLP基於通用逼近定理,而KAN基於Kolmogorov-Arnold表示定理。如下圖所示,KAN在邊上具

特斯拉機器人Optimus最新影片出爐,已經可以在工廠裡打工了。正常速度下,它分揀電池(特斯拉的4680電池)是這樣的:官方還放出了20倍速下的樣子——在小小的「工位」上,揀啊揀啊揀:這次放出的影片亮點之一在於Optimus在廠子裡完成這項工作,是完全自主的,全程沒有人為的干預。而且在Optimus的視角之下,它還可以把放歪了的電池重新撿起來放置,主打一個自動糾錯:對於Optimus的手,英偉達科學家JimFan給出了高度的評價:Optimus的手是全球五指機器人裡最靈巧的之一。它的手不僅有觸覺

目標偵測在自動駕駛系統當中是一個比較成熟的問題,其中行人偵測是最早得以部署演算法之一。在多數論文當中已經進行了非常全面的研究。然而,利用魚眼相機進行環視的距離感知相對來說研究較少。由於徑向畸變大,標準的邊界框表示在魚眼相機當中很難實施。為了緩解上述描述,我們探索了擴展邊界框、橢圓、通用多邊形設計為極座標/角度表示,並定義一個實例分割mIOU度量來分析這些表示。所提出的具有多邊形形狀的模型fisheyeDetNet優於其他模型,並同時在用於自動駕駛的Valeo魚眼相機資料集上實現了49.5%的mAP

這篇論文探討了在自動駕駛中,從不同視角(如透視圖和鳥瞰圖)準確檢測物體的問題,特別是如何有效地從透視圖(PV)到鳥瞰圖(BEV)空間轉換特徵,這一轉換是透過視覺轉換(VT)模組實施的。現有的方法大致分為兩種策略:2D到3D和3D到2D轉換。 2D到3D的方法透過預測深度機率來提升密集的2D特徵,但深度預測的固有不確定性,尤其是在遠處區域,可能會引入不準確性。而3D到2D的方法通常使用3D查詢來採樣2D特徵,並透過Transformer學習3D和2D特徵之間對應關係的注意力權重,這增加了計算和部署的
